欢迎登录材料期刊网

材料期刊网

高级检索

从分析纳米隔热材料的传热机理入手,指出微米/亚微米孔隙结构特征是决定其是否具有“超级隔热”性能的关键因素。以常温常压下热导率0.02W/m·K为目标,利用理论计算方法获得了纳米超级隔热材料大孔孔隙尺寸及其所占体积分数的最大容限,并采用SiO2纳米隔热材料的测试结果进行了验证。以满足1000℃以上使用要求作为目标,制备了1200℃下结构稳定性良好的SiO2-Al2O3复合纳米超级隔热材料,采用自行研制的超低热导率测试样机对不同温度和压力条件下的热导率进行测试,并与石英灯加热法测评试样热导率的实验结果进行了对比。最后提出了本领域存在的其它难题,展望了纳米超级隔热材料的未来发展潜力。

Nano-porous superinsulation materials have uhro-low thermal conductivities, which depends on the micro/ sub-micrometer porous structure. The macropore volume limitation is calculated and validated for silica aerogel of 0.02 W/ m . K at 20 ℃ under atmosphere. SiO2-Al2O3 nanoporous insulation materials with high thermal stability at 1 200 ℃ have been synthesized. The thermal conductivities have been tested and compared with the quartz lamp heater experiment results. The potential development of nano-porous superinsulation materials in future is also reviewed.

参考文献

[1] Hunt A J.Aeroge|:A Transparent Porous Super:nsulator[A].Pusloby:ASCE,1992:398-403.
[2] Hunt A J .Aerogel:A High Pel"formance Insulating Materials at 0.lbar[J].ASTM Special Technical Publication,1991,116:4556-4563.
[3] Fricke J;Emmerling A .Aerogels[J].Journal of the American Ceramic Society,1992,75(08):2027-2036.
[4] Erik R. Bardy;Joseph C. Mollendorf;David R. Pendergast .Thermal Conductivity and Compressive Strain of Aerogel Insulation Blankets Under Applied Hydrostatic Pressure[J].Journal of heat transfer: Transactions of the ASME,2007(2):232-235.
[5] Te-Yu Wei;Tso-Fu Chang;Shin-Yuan Lu .Preparation of Monolithic Silica Aerogel of Low Thermal Conductivity by Ambient Pressure Drying[J].Journal of the American Ceramic Society,2007(7):2003-2007.
[6] Wei T Y;Lu S Y;Chang T F .New Class of Opacified Monolithic Aerogels of Uhralow High-Temperature Thermal Conductivities[J].JPhysChem C,2009,113:7424-7428.
[7] Lee 1;Stevens P C;Zeng S Q et al.Thermal Characterization of Carbon-Opacified Silica Aerogels[J].Journal of Non-Crystalline Solids,1995,186:285-290.
[8] Kuhn J;Gleissner T;Arduini-Schuster M C et al.Integration of Mineral Powders into SiO2 Aerogels[J].Journal of Non-Crystalline Solids,1995,186:291-295.
[9] Reim M;Reichenauer G;Korner W;Manara J;Arduini-Schuster M;Korder S;Beck A;Fricke J .Silica-aerogel granulate - Structural, optical and thermal properties[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2004(0):358-363.
[10] Scherer GW. .Characterization of aerogels[J].Advances in Colloid and Interface Science,1998(0):321-339.
[11] Reichenauer G.;Scherer GW. .Nitrogen sorption in aerogels[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2001(1/3):167-174.
[12] Yao X;Hu Z;Li J.A Theoretical Calculation of Thermal Con- ductivity of Silica Aeroge|[M].
[13] 胡子君;姚先周;吴文军 .轻质纳米隔热材料组织结构设计与优化控制[J].气体物理一理论与应用,2010,5(02):175-180.
[14] Zeng S Q;Hunt A;Greif R .Geometric Structure and Therma!Conductivity of Porous Medium Silica Aerogel[J].Journal of Heat Transfer,1995,177:1055-1058.
[15] 刘育松,张欣欣,于帆.纳米尺度孔隙内气体导热系数的分子动力学模拟[J].北京科技大学学报,2006(12):1182-1185.
[16] 魏高升,张欣欣,于帆.超级绝热材料气凝胶的纳米孔结构与有效导热系数[J].热科学与技术,2005(02):107-112.
[17] Hrubesh LW. .Aerogel applications[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,1998(1):335-342.
[18] Pocn J F;Satcher J H;Hrubesh L W .Synthesis of High Porosity,Monolithic Alumina Acrogels[J].Journal of Non-Crystalline Solids,2001,285:57-63.
[19] Komameni S;Roy R;Selvaraj U .Nanocomposite Aerogels:The Si02-A1203 System[J].Journal of Materials Research,1993,8(12):3163-3167.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%