欢迎登录材料期刊网

材料期刊网

高级检索

采用HF-4工业用横流CO2激光照射Fe32Mn3A17Cr反铁磁精密电阻合金,进行激光表面熔凝抗腐蚀改性.研究Fe32Mn3Al7Cr合金激光熔凝层的显微组织、相结构,显微硬度和抗蚀性.合金激光熔凝层具有细密均匀的单相奥氏体组织,依次由细小等轴胞状组织区、柱状组织区与热影响区组成,熔凝层厚度约为650 μm.激光熔凝层的显微硬度HV0.5N约为16 GPa,较合金基体提高1倍.在1 mol/L Na2SO4溶液中,激光熔凝层距表面深度100和350 μm的阳极极化曲线,均呈现无活化-钝化转变区的自钝化特征,自腐蚀电位Ecorr由原始合金的-658mV(SCE)分另增至-420和478mV(SCE),致钝电流密度ipp由2.9 μA/cm2分别降至1.3和1.0 μA/cm2,等轴胞状组织和柱状组织的激光熔凝层具有相近的抗均匀腐蚀性能.在pH=14的0.1 mol/L NaCl溶液中,激光熔凝层的阳极极化曲线由原始合金的钝化-孔蚀击穿过程转变为钝化-过钝化溶解过程,无孔蚀发生.激光熔凝层在1 mol/L Na2SO4溶液中的电化学阻抗谱(EIS),较原始合金的容抗弧直径及|Z|值增加,相位角平台变宽,利用等效电路Rs-(Rt//CPE)拟合的激光熔凝层的极化电阻Rt由原始合金的13.8 kΩ·cm2增至38.7 kΩ·cm2,计算的有效电容CB则由32.5μF/cm2降至19.7 μF/cm2.连续激光熔凝改性的Fe32Mn3Al7Cr反铁磁精密电阻合金的抗蚀性显著提高.

参考文献

[1] Lu Xing;Tian Xing;Zhang Yansheng .[J].Journal of Functional Materials(功能材料),1998,29:168.
[2] Umino R;Liu X J;Sutou Y et al.[J].J Phase Equil Diff,2006,27:54.
[3] Gebhardt T;Music D;Kossmann D et al.[J].ACTA MATERIALIA,2011,59:3145.
[4] Zhu X M;Zhang Y S .[J].CORROSION,1998,54:3.
[5] Zhu X M;Liu M;Zhang Y S .[J].Corro Eng Sci Technol,2007,42:22.
[6] Lee JW.;Duh JG.;Wang JH. .Mechanical property evaluation of cathodic arc plasma-deposited CrN thin films on Fe-Mn-Al-C alloys[J].Surface & Coatings Technology,2003(2/3):223-230.
[7] Jaw J H;Cheng W C;Wang C J .[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2005,36A:2289.
[8] Su CW;Lee JW;Wang CS;Chao CG;Liu TF .The effect of hot-dipped aluminum coatings on Fe-8Al-30Mn-0.8C alloy[J].Surface & Coatings Technology,2008(9):1847-1852.
[9] Wang C H;Luo C W;Huang C F et al.[J].Journal of Alloys and Compounds,2011,509:691.
[10] Zhu Xuemei;Cao Xuemei;Liu Ming et al.[J].Acta Metall Sin(金属学报),2012,48(11):1357.
[11] Trtica MS.;Nenadovic TM.;Mitrovic MM.;Gakovic BM. .Surface modification of stainless steels by TEA CO2 laser[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2001(1/2):48-57.
[12] Chong P H;Liu Z;Wang X Y et al.[J].THIN SOLID FILMS,2004,453-454:388.
[13] Kwok CT.;Cheng FT.;Man HC. .Cavitation erosion and pitting corrosion of laser surface melted stainless steels[J].Surface & Coatings Technology,1998(3):295-304.
[14] Kwok CT;Cheng FT;Man HC .Microstructure and corrosion behavior of laser surface-melted high-speed steels[J].Surface & Coatings Technology,2007(2):336-348.
[15] Conde A;Garcia I;Damborenea J J D .[J].Corrosion Science,2001,43:817.
[16] Khalfallah, I.Y.;Rahoma, M.N.;Abboud, J.H.;Benyounis, K.Y. .Microstructure and corrosion behavior of austenitic stainless steel treated with laser[J].Optics & Laser Technology,2011(4):806-813.
[17] Tjong S C;Tsang H C .[J].Surface and Coatings Technology,1993,57:139.
[18] Abbas G;Li L;Ghazanfar O .[J].WEAR,2006,260:175.
[19] Brug J;van den Eeden A L G;Sluyters-Rehbach M et al.[J].Journal of Electroanalytical Chemistry,1984,176:275.
[20] Hamadou L;Kadri A;Benbrahim N .Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2005(5):1510-1519.
[21] Freire L;Carmezim M J;Ferreira M G S et al.[J].Electrochimica Acta,2010,55:6174.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%