欢迎登录材料期刊网

材料期刊网

高级检索

从热力学分析和试验两方面研究As(Ⅲ)在酸性水溶液中与金属铁的反应行为。热力学计算结果表明:在酸性水溶液中,As(Ⅲ)与金属铁作用,分别生成As元素或AsH 3气体的反应在热力学上均是可行的。试验结果表明:在温度为20~80℃、溶液初始pH值为?0.31~4、溶液初始浓度ρ[As(Ⅲ)]为1~20 g/L、铁粉大量过剩的条件范围内,由于动力学方面的原因,生成AsH 3的反应实际并不会发生,铁粉仅能使As(Ⅲ)还原为As元素。铁粉“过量”系数、溶液pH值和温度对沉砷率有显著影响,提高铁粉“过量”系数和温度,可使沉砷率增大,在溶液pH值为3的条件下,沉砷效果最佳。在酸性溶液中,铁粉置换As(Ⅲ)生成As的反应难以进行到底的原因,可能是由于还原的As在铁粉表面沉积阻滞了反应的延续。而在初始pH值为3或较高温度条件下能达到较高的沉砷率,是由于在这些条件下,置换的砷呈疏散形态沉积,未能对铁粉表面形成紧密包裹,使得反应得以延续。

The reactive behaviors between As(Ⅲ) and metallic iron in acidic aqueous solutions were investigated thermodynamically and experimentally. The thermodynamic calculation results show that the reactions between As(Ⅲ) and metallic iron in acidic aqueous solutions, which produce both elemental arsenic and AsH3 gas, respectively, are feasible thermodynamically. The experimental results show that, owing to the kinetic reason, the reaction producing AsH3 gas never occurs actually under a wide range of the conditions, such as, temperature from 20 to 80℃, initial solution pH value from?0.31 to 4, initial As(Ⅲ) concentration from 1 to 20 g/L, and a massive surplus in iron powders. Under these conditions, the iron powders can only reduce As(Ⅲ) ions from solution as elemental arsenic deposition. These factors, such as surplus coefficient of iron powders, solution pH value and temperature, all have obvious effects on the arsenic deposition rate. The arsenic deposition rate increases with the increase of the surplus coefficient of iron powders and temperature, while the best result of arsenic deposition rate is obtained when the pH value is 3. In acidic aqueous solutions, the reaction of iron powders replacing As(Ⅲ) is difficult to progress quickly to the end, the reason may be that arsenic reduced deposits on the surface of iron powders retard the reaction forward. Moreover, a higher arsenic deposition rate is obtained under the condition of pH=3 or higher temperature, the reason can be deduced that, under these conditions, arsenic deposits in loose form, and does not closely coat the surface of iron powders, thus making the reactions between As(Ⅲ) and iron powders sustainable.

参考文献

[1] Badal Kumar Mandal;Kazuo T.Suzuki .Arsenic round the world: a review[J].Talanta: The International Journal of Pure and Applied Analytical Chemistry,2002(1):201-235.
[2] MATSCHULLAT J .Arsenic in the geosphere-A review[J].Science of the Total Environment,2000,249(01):297-312.
[3] Fengxiang X. Han;Yi Su;David L. Monts;M. John Plodinec;Amos Banin;Glover E. Triplett .Assessment of global industrial-age anthropogenic arsenic contamination[J].Naturwissenschaften,2003(9):395-401.
[4] 王清宏,翟秀静,符岩,谢锋.镍、锌、铅及含砷金等矿物和渣的综合利用研究[J].有色矿冶,2014(01):28-31,35.
[5] 边雪,尹少华,罗瑶,吴文远.氟碳铈矿盐酸浸出过程的动力学[J].中国有色金属学报(英文版),2011(10):2306-2310.
[6] A.D. Souza;P.S. Pina;F.M.F. Santos .Effect of iron in zinc silicate concentrate on leaching with sulphuric acid[J].Hydrometallurgy,2009(3/4):207-214.
[7] MORALES A;CRUELLS M;ROCA A;BERGO R .Treatment of copper flash smelter flue dusts for copper and zinc extraction and arsenic stabilization[J].HYDROMETALLURGY,2010,105(01):148-154.
[8] A.M. Amer .Processing of copper anodic-slimes for extraction of valuable metals[J].Waste Management,2003(8):763-770.
[9] 李倩,成伟芳.硫化砷渣的综合利用研究[J].广州化工,2013(13):17-19.
[10] 王玉棉,周兴,黄雁,赵忠兴.黑铜泥酸性浸出及铜砷分离研究[J].兰州理工大学学报,2011(06):19-22.
[11] 何仕超,刘志宏,刘智勇,李玉虎,李启厚.湿法炼锌窑渣铁精矿的浸出热力学分析[J].中国有色金属学报,2013(12):3430-3439.
[12] 王成彦,邱定蕃,江培海.国内铋湿法冶金技术[J].有色金属,2001(04):15-18.
[13] CULLEN W R;REIMER K J .Arsenic speciation in the environment[J].Chemical Reviews,1989,89(04):713-764.
[14] 1997GB. 车间空气中砷及其无机化合物卫生标准[S].
[15] 仇勇海,唐仁衡,陈白珍.砷化氢析出电势的探讨[J].中国有色金属学报,2000(01):101-104.
[16] 卢辉畴.锌粉置换法从含高铜、铅、锌贵液中回收金的研究及生产实践[J].黄金,2004(04):36-38.
[17] 项斯芬;严宣申;庭礼;炳南.氮,磷,砷分族[M].北京:科学出版社,1995:383-387.
[18] 胡杰.萃取分离-碘滴定法测定粗铅中砷量[J].金属材料与冶金工程,2010(03):54-56.
[19] 李永常.试论氢超电势[J].天津化工,2003(02):61-62.
[20] DRAHOTA P;FILIPPI M .Secondary arsenic minerals in the environment:A review[J].Environment International,2009,35(08):1243-1255.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%