{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用物理热蒸发方法在光滑的(111)硅衬底上生长氧化锌微米棒,生长温度为700℃.在硅衬底的不同区域由于生长环境不同,生成物的形貌也不相同.利用扫描电镜图可以很直观地推测出一个完整的氧化锌微米棒生长过程.透射电镜图片显示了纳米棒与微米棒之间完美的外延关系.","authors":[{"authorName":"王维维","id":"5c2334ae-b1f7-4b03-aa6f-8b98906a9c6f","originalAuthorName":"王维维"},{"authorName":"朱丽萍","id":"5e1e98e6-fe11-4b34-805d-3c1976e19d28","originalAuthorName":"朱丽萍"},{"authorName":"叶志镇","id":"125c2920-053f-46dd-8fcb-a527842360ec","originalAuthorName":"叶志镇"},{"authorName":"王敬蕊","id":"719426c5-9bf6-418e-b4c7-47f873de0149","originalAuthorName":"王敬蕊"},{"authorName":"杨叶锋","id":"9a54f91c-5268-469c-8cff-6f0b12ca63d3","originalAuthorName":"杨叶锋"},{"authorName":"何海平","id":"a0403f67-3e84-40d2-898a-ec4ddf65f876","originalAuthorName":"何海平"},{"authorName":"赵炳辉","id":"8b91b5eb-788d-4534-92a4-58d137618ed4","originalAuthorName":"赵炳辉"}],"doi":"","fpage":"348","id":"774d9a99-8804-4751-8509-b5f6dfd89635","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"612492e0-bc18-4e34-bd00-904fdca12809","keyword":"晶体外貌","originalKeyword":"晶体外貌"},{"id":"b9bd4a50-60d6-4654-aad3-9ab21f68ac17","keyword":"外延生长","originalKeyword":"外延生长"},{"id":"eb1bca97-731c-4a24-836f-fc7c95c7b340","keyword":"物理热蒸发","originalKeyword":"物理热蒸发"},{"id":"425f553a-a03a-4e52-87db-26759e3ca193","keyword":"自组装","originalKeyword":"自组装"}],"language":"zh","publisherId":"clkxygc200903005","title":"氧化锌微米棒的微观生长过程","volume":"27","year":"2009"},{"abstractinfo":"使用钠熔液液相外延在GaN/蓝宝石衬底上生长出GaN晶体;研究晶体生长速度与生长压力的关系,使用DCXRD对样品进行表征,发现在氮气压力为3.8MPa,温度为800℃的条件下,外延速度较快且结晶质量较高;研究还发现GaN晶体外延层的生长速率不但与溶液中N的输运有关,还与熔液中N的浓度有关.","authors":[{"authorName":"王斌","id":"e4472755-e3a2-442a-9aba-008e17e3766b","originalAuthorName":"王斌"},{"authorName":"赵志德","id":"1e550b74-0f03-4f1d-9941-f47b7bfd0b05","originalAuthorName":"赵志德"},{"authorName":"隋妍萍","id":"2c8b22f7-efd6-44c5-8f10-6edb3acaeb21","originalAuthorName":"隋妍萍"},{"authorName":"徐伟","id":"e5dc0c00-3f74-4529-9c68-4e9d20c69c90","originalAuthorName":"徐伟"},{"authorName":"于广辉","id":"fde68737-6772-4507-8d07-b0b9f0227d94","originalAuthorName":"于广辉"}],"doi":"","fpage":"59","id":"6c865442-35fa-4337-8e2b-37f60cc8bcd7","issue":"2","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"21513a81-35de-410c-93d0-bfc643a6c5d8","keyword":"氮化镓","originalKeyword":"氮化镓"},{"id":"bb783f0f-4c5f-478b-bd7a-39a100d78e05","keyword":"液相外延","originalKeyword":"液相外延"},{"id":"f56e5b37-0977-4759-9b10-9c25a6ee260c","keyword":"XRD","originalKeyword":"XRD"}],"language":"zh","publisherId":"gnclyqjxb201302003","title":"N扩散对熔液法生长GaN晶体外延速率的影响","volume":"19","year":"2013"},{"abstractinfo":"本文从与真空接触的存在二支声子的半无限极性晶体表面附近极化子的哈密顿算符入手,应用二支模型理论,分别对GaAs和ZnO两种材料计算了外表面电子的量子像势及其极化子的基态能量.计算结果表明,利用二支模型理论求出的外表面极化子的基态能量与利用一支模型理论求出的外表面极化子的基态能量相差较大,对GaAs,误差约为31.1%;对ZnO,误差约为14.8%.","authors":[{"authorName":"梁辉","id":"c5fe5c4c-a07b-40a9-81bf-51747d536248","originalAuthorName":"梁辉"},{"authorName":"刘宁","id":"120273e3-f0fb-450b-8df8-bac1216ea3ad","originalAuthorName":"刘宁"}],"doi":"10.3969/j.issn.1000-3258.2003.01.014","fpage":"76","id":"9558447b-1948-4076-9d98-7160d8bc4b11","issue":"1","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"ad9dfc8e-6549-4977-a33c-19e1d9dbdf29","keyword":"极性晶体","originalKeyword":"极性晶体"},{"id":"4983af37-a610-494f-bd47-29655284c898","keyword":"表面极化子","originalKeyword":"表面极化子"},{"id":"57214882-5d38-4644-8a85-ace2132a303e","keyword":"量子像势","originalKeyword":"量子像势"},{"id":"9a359ada-0eac-40f8-a649-99ac8949edb6","keyword":"基态能量","originalKeyword":"基态能量"}],"language":"zh","publisherId":"dwwlxb200301014","title":"极性晶体外表面电子的量子像势及其极化子的基态能量","volume":"25","year":"2003"},{"abstractinfo":"选用干湿法纺丝制得的聚乳酸(PLLA)纤维,通过一定的编织工艺制成织物.将织物置于37℃、pH=7.4的磷酸缓冲溶液中进行体外降解.通过对织物失重率、力学性能和纤维分子量及分布、结晶度以及表面形态的测定,对干湿纺PLLA纤维的水解机理进行了探讨,发现干湿法纺丝工艺可促进PLLA纤维的体外降解速率.","authors":[{"authorName":"华慧","id":"6a82eee7-d6e5-49bc-b5c4-b31430b0c476","originalAuthorName":"华慧"},{"authorName":"张秀芳","id":"b527300d-8c08-4a29-81d6-bb6349d6808a","originalAuthorName":"张秀芳"},{"authorName":"沈新元","id":"60fb4df1-f1d7-4838-9559-89b7b8dd553a","originalAuthorName":"沈新元"}],"doi":"","fpage":"109","id":"a2e27def-b5c7-454b-b2c8-7e36008b5e6e","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"bd01515a-5dfb-4440-9864-e8ec1f98162f","keyword":"聚乳酸纤维","originalKeyword":"聚乳酸纤维"},{"id":"89b1a352-6336-4098-823c-d52dc843ed4f","keyword":"干湿法纺丝","originalKeyword":"干湿法纺丝"},{"id":"1a4b7e0e-bc1b-493d-9246-daa7e758fca8","keyword":"体外降解","originalKeyword":"体外降解"},{"id":"f3b4cf7b-134a-461c-94a8-6b518905ff0b","keyword":"磷酸缓冲溶液","originalKeyword":"磷酸缓冲溶液"}],"language":"zh","publisherId":"gfzclkxygc200703027","title":"干湿纺聚乳酸纤维的体外降解性能","volume":"23","year":"2007"},{"abstractinfo":"聚乳酸(PLA)是一类高分子聚酯,凡是能引起酯键断裂的因素都可以使聚乳酸发生降解.本文综述了聚乳酸(PLA)及其共聚物的化学降解、酶降解、超声波降解、辐射降解和微生物降解的体外降解方法及降解机理.","authors":[{"authorName":"赵晓东","id":"a0093a57-9e68-4052-82c1-8e9944ebc5ce","originalAuthorName":"赵晓东"},{"authorName":"李永胜","id":"310be709-8ebb-4e34-a548-d931b489465b","originalAuthorName":"李永胜"},{"authorName":"刘文广","id":"666af94f-be9c-4240-867a-90d63c712054","originalAuthorName":"刘文广"},{"authorName":"姚康德","id":"71137fd7-0905-41f9-8c76-b9d7b67e323d","originalAuthorName":"姚康德"}],"doi":"10.3969/j.issn.1671-5381.2004.01.008","fpage":"24","id":"a8021494-ffb1-4eb9-92c5-62fb823f6fbc","issue":"1","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"043e7d6e-2b49-4407-8052-09c75767d1e6","keyword":"聚乳酸","originalKeyword":"聚乳酸"},{"id":"20610113-a858-4fc7-a098-54c191cf7e3a","keyword":"共聚物","originalKeyword":"共聚物"},{"id":"a0c50275-a538-41ed-a8b1-7d985aa93c20","keyword":"降解","originalKeyword":"降解"}],"language":"zh","publisherId":"hccllhyyy200401008","title":"聚乳酸及其共聚物的体外降解方法","volume":"33","year":"2004"},{"abstractinfo":"对C/PLA复合材料的体外降解特性进行了研究.考察了该复合材料在降解过程中吸水率、质量损失和宏观力学性能的变化,并与PLA进行了对比.结果表明,与PLA相比,C/PLA复合材料的吸水率增加,质量损失下降,弯曲强度和剪切强度的下降速率减小.在体外降解过程中,C/PLA复合材料的界面发生降解,界面弱化是造成复合材料力学性能下降的主要因素.","authors":[{"authorName":"王玉林","id":"4b707d8d-31d4-4a60-9555-ff4443ae3387","originalAuthorName":"王玉林"},{"authorName":"万怡灶","id":"1479bc90-8e41-47a7-9113-4b1ce3b15373","originalAuthorName":"万怡灶"},{"authorName":"李群英","id":"26209fdc-46d8-4169-b5f2-1dd6f28091da","originalAuthorName":"李群英"},{"authorName":"成国祥","id":"9f6b121e-a1b5-4c0d-bf36-255e4ee1da37","originalAuthorName":"成国祥"},{"authorName":"姚康德","id":"ddc5ba58-bd14-4ae2-937d-2d0420618115","originalAuthorName":"姚康德"}],"doi":"","fpage":"553","id":"95a8e02e-2d13-4cfe-ae36-94bce3e7fd40","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"f013393b-7e0f-4daa-a51d-0a7d4fe96151","keyword":"聚乳酸","originalKeyword":"聚乳酸"},{"id":"2e714e78-79c0-4f09-9ff0-7ed2c38ab4f8","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"28f659a9-f794-4f31-87f7-bc080a729474","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"1c2a86ef-fd1c-4209-835d-6ebaf6b21254","keyword":"体外降解","originalKeyword":"体外降解"},{"id":"64d5b70f-fa8a-43cc-9055-917403215a80","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gncl200105040","title":"C/PLA复合材料的体外降解特性研究","volume":"32","year":"2001"},{"abstractinfo":"研究了中等分子量((M)η=1.10×105)的聚D,L-乳酸在体外不同环境中的可降解性能,包括不同pH值溶液(37℃)和自然土壤.降解性能采用失重率、分子量变化、溶液pH值变化等来进行评价,并对试样表面形貌采用扫描电镜(SEM)进行了观察.结果表明:聚D,L-乳酸在体外环境中具有良好的可降解性,受降解环境的影响较大;失重和分子量的减小并不平行;在不同pH值溶液和土壤中的分子量变化在一定时间内符合一级反应动力学,且随溶液pH值的增大,降解速率减小.","authors":[{"authorName":"舒静","id":"935207d5-8d3b-4944-a399-978728de7742","originalAuthorName":"舒静"},{"authorName":"任丽丽","id":"8dde5a6e-d725-448e-883a-5068f9a96e17","originalAuthorName":"任丽丽"},{"authorName":"王鹏","id":"c3c75f76-2aaa-46f3-a722-42c94e234760","originalAuthorName":"王鹏"},{"authorName":"王鉴","id":"2e63edd9-a352-4ac8-84d3-a1af76b2be13","originalAuthorName":"王鉴"},{"authorName":"王刚","id":"2528fa3c-8226-4520-bc42-630e94991c02","originalAuthorName":"王刚"}],"doi":"","fpage":"100","id":"f20a9dff-7541-4558-a0e5-4308f855ddf0","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"e4d2a67e-fa5d-4461-94b4-2b44a708b850","keyword":"聚D,L-乳酸","originalKeyword":"聚D,L-乳酸"},{"id":"5e71cce6-ac7e-4e50-a81a-22be68045f4c","keyword":"体外可降解性","originalKeyword":"体外可降解性"},{"id":"97fb3897-20f8-4ac0-81e2-d95ef189c1e6","keyword":"降解动力学","originalKeyword":"降解动力学"}],"language":"zh","publisherId":"gfzclkxygc200806026","title":"聚D,L-乳酸的体外可降解性能","volume":"24","year":"2008"},{"abstractinfo":"采用溶胶-凝胶法制备了CaO-P2O5-SiO2系统生物活性玻璃粉体,并通过成型烧结工艺制成多孔材料,对比研究了样品在动态和静态2种体外模拟实验系统中的材料矿化沉积,通过测量溶液pH值,Ca2+浓度,及样品的XRD、SEM、FTIR测试,证明了动态体外模拟系统可以更好地模拟体内环境,生物活性玻璃材料在2种模拟系统中表面都有碳酸羟基磷灰石生成.","authors":[{"authorName":"赵娜如","id":"1f2a9f0f-326f-4369-a1fe-920de30a175f","originalAuthorName":"赵娜如"},{"authorName":"王迎军","id":"2bfb070a-df05-4bae-8a16-03a5d151b2a2","originalAuthorName":"王迎军"},{"authorName":"陈晓峰","id":"344a0deb-5309-42bf-98ef-a3c80e03333e","originalAuthorName":"陈晓峰"},{"authorName":"杨宇霞","id":"b558ff7e-0330-4dee-9a63-3d4d604dbeed","originalAuthorName":"杨宇霞"},{"authorName":"吴刚","id":"5f81a233-c9dd-49cc-9e6e-a2075d596948","originalAuthorName":"吴刚"}],"doi":"","fpage":"78","id":"4ab7e250-ba72-448e-ae62-e7c0ce9ab679","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"c0371cc6-c889-4876-8d00-521d4459dc68","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"a9695dd6-712a-4c71-8da8-d954514491d3","keyword":"生物活性玻璃","originalKeyword":"生物活性玻璃"},{"id":"acf02e8c-0504-4db0-818b-4ac8fc8d7ce5","keyword":"碳酸羟基磷灰石","originalKeyword":"碳酸羟基磷灰石"}],"language":"zh","publisherId":"cldb200412022","title":"Sol-gel生物活性玻璃体外矿化沉积的动态/静态体外模拟系统对比研究","volume":"18","year":"2004"},{"abstractinfo":"采用在Ringer模拟体液静态体外浸泡的方法,研究工业纯钛试片经过一定时间的浸泡后的失重和表面形貌的变化.采用等通道径角挤压(ECAP)方法处理工业纯钛并与粗晶纯钛进行对比,对ECAP处理的TA9和粗晶TA9也做了对比.结果表明:纯钛在400℃ECAP处理后的微观组织形成具有明显方向性的板条状组织,ECAP纯钛表面沉积的NaCl晶体数量大于租晶Ti,TA9也表现出相似结果.纯钛的腐蚀机制是一种受到电偶腐蚀控制的均匀腐蚀,细晶组织导致电偶的数量增加.","authors":[{"authorName":"周清","id":"4feba040-f452-472c-b8f8-e2dab0f378d7","originalAuthorName":"周清"},{"authorName":"程刚良","id":"0a47135b-01d3-4f4c-a1e1-89829af96fc9","originalAuthorName":"程刚良"},{"authorName":"徐军","id":"cc777d62-6e51-436e-b87a-f3af082f22da","originalAuthorName":"徐军"}],"doi":"","fpage":"204","id":"9c6beba7-df3d-4fc7-bb1d-7f4294e89ae1","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"6e924fc5-fb23-4f53-87b6-a785a9aae88b","keyword":"生物医用材料","originalKeyword":"生物医用材料"},{"id":"e739a232-a476-46cb-8372-edb746995648","keyword":"表面","originalKeyword":"表面"},{"id":"d62d646c-e334-46c0-915f-b3a7f01090a9","keyword":"电化学势","originalKeyword":"电化学势"},{"id":"50e199a5-3fa2-4b4f-9827-9b44b0c3dbaa","keyword":"CP-Ti","originalKeyword":"CP-Ti"},{"id":"c4b9fad4-8b35-45b0-bda2-7ffb0cc5e2d7","keyword":"ECAP","originalKeyword":"ECAP"}],"language":"zh","publisherId":"xyjsclygc201501039","title":"体外浸泡纯钛的表面腐蚀和ECAP的影响","volume":"44","year":"2015"},{"abstractinfo":"镁及其合金良好的力学性能和生物降解性能克服了传统金属移植材料的缺陷,可避免骨骼修复后二次取出手术.但镁极易腐蚀,使用前准确评价其耐腐蚀性能非常重要.列出了4种体外耐腐蚀性能试验方法,阐述了不同评价方法的主要优点和局限性.","authors":[{"authorName":"陈玲玲","id":"c09860e8-9db9-4b04-98fb-23409fa74fb5","originalAuthorName":"陈玲玲"},{"authorName":"顾艳红","id":"706de2a3-92e3-42d0-8729-b65926e4eb46","originalAuthorName":"顾艳红"},{"authorName":"窦艳涛","id":"f4921da6-e61f-401a-94a4-1a702e65c803","originalAuthorName":"窦艳涛"},{"authorName":"张建军","id":"a2abca2b-fd5c-4ee5-a0ef-5413b46c1d13","originalAuthorName":"张建军"},{"authorName":"刘淑晶","id":"577cd4cb-033b-45ac-b921-7c2f67d4ce63","originalAuthorName":"刘淑晶"},{"authorName":"赵杰","id":"0960ff74-58f9-4214-a987-28177e8a16e1","originalAuthorName":"赵杰"}],"doi":"","fpage":"51","id":"64bd191c-bfd1-4986-ab27-d4fe15fdda39","issue":"4","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"d7a43a0c-dcfa-4208-b866-4aedf8c17b4a","keyword":"体外腐蚀评价","originalKeyword":"体外腐蚀评价"},{"id":"d4214942-3273-43e7-9123-c43288730bac","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"08955a08-1818-4e53-b464-0273fbd071ff","keyword":"生物降解","originalKeyword":"生物降解"}],"language":"zh","publisherId":"clbh201404015","title":"生物可降解镁合金的体外腐蚀评价方法","volume":"47","year":"2014"}],"totalpage":1217,"totalrecord":12165}