欢迎登录材料期刊网

材料期刊网

高级检索

铁素体系铬钼耐热钢优良的综合性能是火力发电、石油化工等行业的关键性技术要求之一.介绍了2%Cr、9%Cr、12%Cr(质量分数,下同)三类铁素体系铬钼耐热钢典型钢种及重要合金元素的最新研究成果,分析、总结了铁素体系铬钼耐热钢的成分设计变化趋势,指出通过合理的成分及工艺设计,控制析出相的种类、密度、形貌和尺寸,能有效改善材料高温蠕变性能,为此类钢种的开发提供基础性参考.

参考文献

[1] Ingo P .A technology successfully developed in developing countries[OL].http://www.worldbank.org/html/fpd/em/supercritical/supercritical.htm
[2] 李振中;吴少华;黄其励.超超临界燃煤发电机组的技术选择与产业化发展[A].海南,2004:14.
[3] Ohta S.Advanced Ferrite Heat-resistant Steel[M].Tokyo:Science & Engineering Press,1998:1.
[4] Fujimitsu MASUYAMA .History of Power Plants and Progress in Heat Resistant Steels[J].ISIJ International,2001(6):612-625.
[5] 杨冬,徐鸿.浅议超超临界锅炉用耐热钢[J].锅炉制造,2006(02):6-8.
[6] 徐沁 .电站锅炉用耐热钢新钢种介绍[J].锅炉技术,1999,30(06):28.
[7] 赵钦新;顾海澄;陆燕荪 .国外电站锅炉耐热钢的一些进展[J].动力工程,1998,18(01):74.
[8] 陈崇刚,黎国磊.我国21/4Cr-1Mo-1/4V抗氢钢的开发[J].石油化工设备技术,2002(05):38-42,48.
[9] 太田定雄.铁素体系耐热钢--向世界前沿不懈攀登的研究与开发[M].北京:冶金工业出版社,2003:97.
[10] 朱丽慧.新型锅炉用耐热钢的研究进展[J].热处理,1999(04):6.
[11] 宁保群,刘永长,殷红旗,韩雅静,杨留栓.超高临界压发电厂锅炉管用铁素体耐热钢的发展现状与研究前景[J].材料导报,2006(12):83-86.
[12] 陆燕荪.从超临界机组的发展透视研发新材料的紧迫性[J].发电设备,2006(03):149-151.
[13] 胡正飞,杨振国.高铬耐热钢的发展及其应用[J].钢铁研究学报,2003(03):60-65.
[14] Masuyama F .Recent development of heat resistant steels for fossil-fired power plants[J].Journal of the Iron & Steel Institute of Japan,1994,80(08):587.
[15] Ennis P J;Wouters Y;Quadakkers WJ.The effects of oxidation on the service life of 9wt%~12wt% chromium steels[A].Cambridge:The Cambridge University Press,1998:457.
[16] Abe F;Nakazawa S.Microstructural evolution and creep behaviour of bainitic,martensitic and martensite-ferrite dual phase steels[J].Journal of Materials Science and Technology,1992(08):1063.
[17] Baker R G;Nutting J.The tempering of 2.25Cr1Mo steel after quenching and normalizing[J].Journal of the Iron and Steel Institute,1959(192):961.
[18] Foldyna V;Jakobova A;Riman R et al.Effect of structural facors on the creep properties of modified chromium steels[J].Steel Research International,1991,62(10):453.
[19] Hald J.Material Comparison between NF616,HCM12A and TB12M Ⅲ:Microstructural Stability and Ageing[A].,1995:152.
[20] Tsuda Y;Ishii R;Yamada M.Newly developed 12% chromium heat resistant steel for steam turbines[A].Tokyo Japan,1997:131.
[21] 董德俊;胥继华.新型铁素体热强钢的研究[J].钢铁研究学报,1997(09):52.
[22] Lundin L .High resolution microanalysis of creep resistant 9wt%~12wt% Chromium Steels[D].Goteborg,Sweden:Chalmers University of Technology,1995.
[23] Masaki Taneike;Fujio Abe;Kota Sawada .Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions[J].Nature,2003,424:294.
[24] Hidaka K;Fukui Y;Nakamura S.Development of heat resistant 12%CrWCoB steel rotor for USC power plant[A].San Sebastian,Spain,1998:418.
[25] Tsuchiyama T;Futamura Y;Takaki S .Strengthening of heat resistant martensistie steel by Cu addition[J].Key Engineering Materials,2000,171-174:411.
[26] Kouichi MARUYAMA;Kota SAWADA;Jun-ichi KOIKE .Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel[J].ISIJ International,2001(6):641-653.
[27] Abe.F.Recent results of long-term creep rupture test[A].Tsububa,Japan,1999:289.
[28] Hald J;Straub S.Microstrueture stability of 9%~12% CrMoWVNbN-steel[A].Liége Belgium,1998:171.
[29] Manabu TAMURA;Yusaku HARUGUCHI;Masahiro YAMASHITA;Yoshikazu NAGAOKA;Kensuke OHINATA;Kohtarou OHNISHI;Eiki ITOH;Hiroyuki ITO;Kei SHINOZUKA;Hisao ESAKA .Tempering Behavior of 9%Cr-1%Mo-0.2%V Steel[J].ISIJ International,2006(11):1693-1702.
[30] Yamada K.;Muneki S.;Abe F.;Igarashi M. .Creep properties affected by morphology of MX in high-Cr ferritic steels[J].ISIJ International,2001(S.s):S116-S120.
[31] Purmensky J;Foldyna V .Development of low alloy and modified chromium steels strengthened by nanoparticles[J].Acta Metall Slovaca,2007,13(01):94.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%