{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":4,"startPagecode":1},"records":[{"abstractinfo":"以硝酸铜、碳酸锂等为原料,采用凝胶-固相反应法制备了铜酸锂高温CO2吸收材料.通过热重技术对升温和恒温状态下铜酸锂吸收CO2的性能进行了研究;利用扫描电子显微镜和X射线粉末衍射技术分别观察和评价了材料的表面形貌与结构特征.结果表明,可在750℃、24h煅烧条件下获得纯净稳定的铜酸锂材料;与正硅酸锂材料相比,铜酸锂材料具有较宽的CO2吸收温度范围;制备出的材料在695℃下CO2吸收量最大,饱和吸收量可达33%左右.","authors":[{"authorName":"张超","id":"fe56e83b-6b7c-4505-bf7b-d76dff6d64ad","originalAuthorName":"张超武"},{"authorName":"徐彬","id":"a177850f-1942-4d3d-9ffc-714ac445deef","originalAuthorName":"徐彬"},{"authorName":"缪金良","id":"5598d436-e08e-4210-a795-11b0b753e595","originalAuthorName":"缪金良"},{"authorName":"时春辉","id":"3b3982fc-ed5f-43b2-ae81-52fd29595122","originalAuthorName":"时春辉"},{"authorName":"刘昌涛","id":"ff7153dc-849b-4108-ab6b-107e26bde3ad","originalAuthorName":"刘昌涛"},{"authorName":"王芬","id":"082c3464-5ab1-4294-9db7-4aaf006dcc17","originalAuthorName":"王芬"},{"authorName":"康世亮","id":"fa89ade2-9709-46f3-8b38-2c4b294a8dde","originalAuthorName":"康世亮"}],"doi":"","fpage":"2121","id":"fcd85b52-a1a7-45ad-ab86-dc23ca1c6a67","issue":"10","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"624e5bfb-8d78-45d9-88b4-fc854e97e5fe","keyword":"Li2CuO2","originalKeyword":"Li2CuO2"},{"id":"e7489e49-c3e6-4a4d-8824-c74569a189dc","keyword":"凝胶-固相反应法","originalKeyword":"凝胶-固相反应法"},{"id":"691c0916-cf02-47e8-ab01-48695566379c","keyword":"高温吸收","originalKeyword":"高温吸收"},{"id":"f83bc775-1d58-434e-9468-4d6c4bfe1d30","keyword":"CO2","originalKeyword":"CO2"}],"language":"zh","publisherId":"rgjtxb98201310028","title":"Li2CuO2高温吸碳材料的制备及性能研究","volume":"42","year":"2013"},{"abstractinfo":"以硅酸钠和硫酸铝为生成硅铝胶载体的硅源和铝源,以硫酸钛为生成锐钛矿型TiO2的钛源,尿素为掺杂氮源,先通过溶胶-凝胶和水热法原位共生合成产物前躯体,再在氮气气氛下结晶化烧结制得硅铝胶固载掺氮TiO2介孔材料(N/TiO2-SiO2·Al2 O3).借助广角XRD、小角度XRD、透射电子显微镜TEM和X射线光电子能谱XPS等测试手段对所得材料进行了微观结构表征和介孔结构观察,并研究了负载量和烧结温度等条件对介孔结构状态的影响.所得结果表明,所得材料的微观结构为规整性高、尺寸约3~6 nm的网格状介孔结构聚集成尺寸约100~ 200nm团簇,而尺寸为数十纳米的锐钛矿TiO2晶粒分布在网格状介孔结构中.从增强锐钛矿的光催化效应和有利于形成介孔结构两方面优化,TiO2的负载量以摩尔比n(Si)∶ n(Ti)=1∶(0.1 ~0.5)为适当范围.虽然锐钛矿晶型可在很宽温度范围存在于硅铝骨架结构中,但从有利于介孔结构的形成考虑650℃左右的结晶化烧结温度为最佳.","authors":[{"authorName":"张超","id":"9d448491-246f-4783-bac3-c79f02fd1eb6","originalAuthorName":"张超武"},{"authorName":"张利娜","id":"ec2d0309-ff31-4128-95b0-800abae0e669","originalAuthorName":"张利娜"},{"authorName":"刘昌涛","id":"6735eff0-5b99-406b-a2b6-13b657f45f4c","originalAuthorName":"刘昌涛"},{"authorName":"宋大龙","id":"d4804f2b-3959-4c49-87ce-6455b1ea2ee8","originalAuthorName":"宋大龙"},{"authorName":"王芬","id":"8a6d09e1-cfd9-4b12-80be-54ae97e24e83","originalAuthorName":"王芬"}],"doi":"","fpage":"1890","id":"1a9e264b-3163-452d-97bc-c8149d95f1a5","issue":"7","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"6a5c4557-fa69-41ca-9da5-f68118d3abb7","keyword":"硅铝胶","originalKeyword":"硅铝胶"},{"id":"36aad80f-f216-49c3-ab28-a621ffce9fe4","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"050b53aa-9222-40ef-b969-a97708d276e7","keyword":"氮掺杂","originalKeyword":"氮掺杂"},{"id":"c2ab29a4-d4de-465f-a455-ba3b9261ea5a","keyword":"介孔结构","originalKeyword":"介孔结构"},{"id":"19aa145d-f5f9-41bc-b217-f9059e6c40a5","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"rgjtxb98201507031","title":"硅铝胶固载掺氮TiO2介孔光催化材料的原位共生合成及表征","volume":"44","year":"2015"},{"abstractinfo":"为研究Nb3Sn超导材料的A15相成相动力学,设计并制备了四组单组元内锡法(MEIT)超导线.这四组MEIT导线设计了不同的Sn/Cu比,并在一组导线中合金化掺杂了1at%Zr,,所有导线样品先经历210℃/50hr+340℃/25kr的Cu-Sn合金化热处理,然后进行A15相成相热处理.选择四种反应温度:650℃,675℃,700℃和725℃,以研究成相热处理温度和时间的影响.用SEM技术测定所有热处理样品的A15相层厚,然后对不同温度下的热处理时间作图,并进行非线性拟合.所得结果表明四种因素促进了A15相的增长:增加反应温度,延长反应时间,增大Sn/Cu比率和合金化掺杂zr;内锡法Nb,sn超导线材的成相动力学服从Yn=K(T)t变化关系,A15相生长指数n值受热处理温度和Zr掺杂的影响.","authors":[{"authorName":"张超","id":"1c86f240-bdda-464b-9e45-23c3dbbcb1ea","originalAuthorName":"张超武"},{"authorName":"周廉","id":"5e1e497e-9343-4867-91f2-2264bfc5a89f","originalAuthorName":"周廉"},{"authorName":"唐先德","id":"b8ec16e5-95f7-4498-8be9-51efa47d8e09","originalAuthorName":"唐先德"},{"authorName":"","id":"65dd42ac-5ade-49fb-8f55-7e3506eb6a9d","originalAuthorName":""},{"authorName":"","id":"890127ae-fa4a-4d3a-8f68-ca1cf5d97d43","originalAuthorName":""},{"authorName":"张平祥","id":"925e692b-4b0a-4067-9151-223b59f739d8","originalAuthorName":"张平祥"},{"authorName":"卢亚峰","id":"d05a7313-5202-4d6c-9c18-b4f723f118f9","originalAuthorName":"卢亚峰"}],"doi":"","fpage":"1","id":"308c6933-cd9b-404a-8718-5d3b895ea410","issue":"1","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"0bf280f1-cada-4538-8dd7-d9e4b73f3ac4","keyword":"Nb3Sn超导线","originalKeyword":"Nb3Sn超导线"},{"id":"16cfff28-f3e7-41c9-b60c-c07620d12e37","keyword":"单组元内锡法(MEIT)","originalKeyword":"单组元内锡法(MEIT)"},{"id":"6486c9b7-644d-4cb3-896f-bb065f94c7a1","keyword":"Sn/Cu比","originalKeyword":"Sn/Cu比"},{"id":"ee104134-8a2f-47a7-8d99-25e24746db17","keyword":"zr合金化掺杂","originalKeyword":"zr合金化掺杂"},{"id":"e2ec9bef-7b8c-49c8-837b-030bda6d356d","keyword":"A15相成相动力学","originalKeyword":"A15相成相动力学"}],"language":"zh","publisherId":"dwwlxb200901001","title":"内锡法Nb3Sn超导线材的A15相成相动力学研究","volume":"31","year":"2009"},{"abstractinfo":"以硅、铝和钛的无机盐为初始反应物,采用水热法制得了具有光催化活性的氮掺杂硅铝固载TiO2多孔材料(N/TiO2-SiAl).采用XRD、FESEM、FTIR、UV-Vis等现代分析技术分析表征了所得样品的物相结构及形貌;以甲基橙为探针在模拟太阳光下考察样品的光催化性能.结果表明:N/TiO2-SiAl为蜂窝状多孔材料,具有较大的比表面积;锐钛矿相TiO2以Si-O-Ti键的形式结合在无定形硅铝骨架中,并且硅铝骨架能够抑制锐钛矿相TiO2向金红石相转变;氮掺杂能够使TiO2的光响应范围向可见光区移动,在模拟太阳光照射120 min后N/TiO2-SiAl对甲基橙的降解率达到90%以上,具有较高的光催化性能,重复使用4次后降解率依然在80%以上,具有较强的光催化循环使用性能.","authors":[{"authorName":"刘昌涛","id":"20d5b37c-f6c0-4f1e-a9c7-41bb773c41f5","originalAuthorName":"刘昌涛"},{"authorName":"张超","id":"d01bbdd7-cb06-4f2e-a224-7f34612e7f34","originalAuthorName":"张超武"},{"authorName":"徐彬","id":"d2ac2c77-7fd1-4aed-8641-74742fdc5f22","originalAuthorName":"徐彬"},{"authorName":"肖玲","id":"8c3401cb-564b-4df8-8702-d3bfd80b610a","originalAuthorName":"肖玲"},{"authorName":"王芬","id":"ac184b8c-d0ba-4def-9578-3f9fa940d2eb","originalAuthorName":"王芬"}],"doi":"","fpage":"60","id":"396fa775-9099-4bf3-a181-8db8b09bdfdc","issue":"24","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"baa8acc2-617e-4137-b314-d3484ac54775","keyword":"硅铝固载","originalKeyword":"硅铝固载"},{"id":"41107368-f6ea-4b9b-a363-775da0782c35","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"545c4a7b-b7f9-4470-9605-3c2740729715","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"cldb201224017","title":"氮掺杂硅铝固载TiO2多孔材料的制备及其光催化性能分析","volume":"26","year":"2012"},{"abstractinfo":"选取2种ITER用内锡法Nb3Sn复合超导线,采用原位中子衍射测量技术检测超导相的形成过程,通过添加第3种元素研究合金化Sn芯和合金化Nb芯对超导相形成过程及超导线超导性能的影响.结果表明:合金化Sn芯比合金化Nb芯丝有利于提高超导性能;少量添加第3种元素Ti与Sn形成合金能显著促进Sn的扩散和A15相的形成,并且能有效抑制Nb3Sn晶粒的生长,因此增加了晶界面积和钉扎力,增强了超导特性,提高了非铜区临界电流密度Jcn.","authors":[{"authorName":"张超","id":"7628aa73-02cc-4c42-a03d-8bac96fbc151","originalAuthorName":"张超武"},{"authorName":"周廉","id":"0afe36fa-569e-4aa6-8c35-6c4ab4548f0d","originalAuthorName":"周廉"},{"authorName":"唐先德","id":"08d6506c-5e72-4a92-b2d4-a38a0dcede82","originalAuthorName":"唐先德"},{"authorName":"","id":"48b79ddf-1b3f-4c53-a694-c3d46eae359c","originalAuthorName":""},{"authorName":"","id":"c6b3a46a-c819-4b3e-8ff1-215d3d7c50e2","originalAuthorName":""},{"authorName":"张平祥","id":"ac6131d7-2e1e-4e6c-a20f-b50e0b84bc3e","originalAuthorName":"张平祥"},{"authorName":"卢亚峰","id":"e702a214-a65c-40b2-b48d-f173f8268040","originalAuthorName":"卢亚峰"}],"doi":"","fpage":"1367","id":"63c845d9-49ce-44ce-b049-389d85b48201","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"3aa0b0c0-c183-4a5b-b94b-d5687f5c7631","keyword":"Nb3Sn超导线","originalKeyword":"Nb3Sn超导线"},{"id":"3ff2ba96-7fa5-4897-bc75-1d0b1daeb4d8","keyword":"内锡法","originalKeyword":"内锡法"},{"id":"61ae8c57-5e43-44e7-a666-6f682daa8f33","keyword":"中子衍射","originalKeyword":"中子衍射"}],"language":"zh","publisherId":"xyjsclygc200609006","title":"采用中子衍射研究内锡法Nb3Sn的相形成","volume":"35","year":"2006"},{"abstractinfo":"论述了共沉淀法制备羟基磷灰石粉体的过程,以Ca(OH)2和H3PO4为原料,控制适当的Ca/P比、H3PO4的滴加速率、溶液的pH值、反应温度和时间以及煅烧温度等条件,用TEM、X射线衍射仪和红外光谱仪对目标产物的结构和粒度进行了分析.结果表明,溶液在40℃下反应6h,煅烧温度为900℃,产物用无水乙醇洗涤可获得纯度、结晶度、颗粒度和分散性均较好的羟基磷灰石粉体.","authors":[{"authorName":"张超","id":"18d7666d-5f2d-4717-8f20-e8697bd6bccd","originalAuthorName":"张超武"},{"authorName":"李娟莹","id":"a5ed1cdc-6b28-4b45-ad9a-6aac1d6a35a9","originalAuthorName":"李娟莹"}],"doi":"","fpage":"390","id":"96cfe8bc-f5ee-425d-adbe-79abaeff541b","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b0cbe2db-ebc5-40ff-96b5-87bc85bb69d0","keyword":"共沉淀法","originalKeyword":"共沉淀法"},{"id":"c7137d6a-7709-4440-8211-f12024520578","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"},{"id":"906cd627-bc5d-46ba-9563-cb102df0aca1","keyword":"Ca/P比","originalKeyword":"Ca/P比"},{"id":"1795ed35-9129-465f-be7b-2a6fba39e497","keyword":"煅烧温度","originalKeyword":"煅烧温度"},{"id":"fd0d24f3-b39e-43a8-96a3-b4756dacbab8","keyword":"粒度","originalKeyword":"粒度"}],"language":"zh","publisherId":"cldb2006z2115","title":"共沉淀法制备羟基磷灰石影响因素的研究","volume":"20","year":"2006"},{"abstractinfo":"本文采用超导量子干涉仪(SQUID)测定了一种国际热核聚变实验堆(ITER)项目用内锡法Nb3Sn超导线材的不可逆温度,测量方法是在恒定磁场下循环温度,即将温度以一定间隔从10K上升到20K,然后再返回到10K,测定磁矩的偏离温度. 所得结果可用于从生成最佳Nb-Sn相组成方面来优化A15相成相热处理制度. 本研究得出的结论是,对于像ITER使用的高场磁体超导线来说,鉴于其需要在较高磁场下有高的临界电流密度,就需要将超导线的热处理温度适当提高一些. 本实验所用Nb3Sn超导线材的最适宜热处理制度为:675°C/128小时,这样可以得到最佳不可逆温度特性,即最佳的A15相组成.","authors":[{"authorName":"张超","id":"be617ec2-297c-4537-a8ad-a0e305a7e239","originalAuthorName":"张超武"},{"authorName":"","id":"de263a79-aec4-485b-93fe-6eb935b2234f","originalAuthorName":""},{"authorName":"周廉","id":"3e62b47d-8f91-41ec-9290-00392d45ed79","originalAuthorName":"周廉"},{"authorName":"唐先德","id":"11ebfa21-1046-4ec1-a1b3-4a22cb361fd5","originalAuthorName":"唐先德"},{"authorName":"","id":"fb55ca77-072e-4499-84c4-0a1091c2432e","originalAuthorName":""},{"authorName":"张平祥","id":"e67ab32a-1283-401a-8d2e-c5fbe83d9fb1","originalAuthorName":"张平祥"},{"authorName":"卢亚峰","id":"9cbde4f1-1345-4f79-871a-9005f9cb64b4","originalAuthorName":"卢亚峰"}],"doi":"10.3969/j.issn.1000-3258.2006.04.002","fpage":"311","id":"9f600dc6-b5e3-4b45-8b68-ccf4fa91bb75","issue":"4","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"f6f8505f-9800-4942-9b1a-7029b339733f","keyword":"Nb3Sn超导线材","originalKeyword":"Nb3Sn超导线材"},{"id":"d0154e05-764b-4396-bec1-31fdea704544","keyword":"不可逆温度","originalKeyword":"不可逆温度"},{"id":"5bc3afa9-fd07-47f3-bc35-9da7542be2fb","keyword":"ITER工程","originalKeyword":"ITER工程"},{"id":"4b197915-f073-4a03-a91a-2bbb54753c06","keyword":"内锡法","originalKeyword":"内锡法"}],"language":"zh","publisherId":"dwwlxb200604002","title":"ITER用内锡法Nb3Sn超导线材的不可逆温度研究","volume":"28","year":"2006"},{"abstractinfo":"采用超声共聚法制备了含硅羟基磷灰石Si-HA纳米粉体,并用柠檬酸与丙烯酸制成的固化液与之按一定比例调制成含硅羟基磷灰石骨水泥Si-HAC.采用XRD和FESEM对Si-HA纳米粉体的晶相、粒度、结构和表面形貌进行了分析表征,并用万能材料试验机测定了所得Si-HAC骨水泥的力学性能.研究结果表明,将硅源TEOS加入到具有较强碱性的Ca(OH)2氨水前驱液中能有效避免TEOS的水解漂浮,使钙硅均匀混合;将超声空化作用施加于Ca(OH)2和H3PO4外加硅源的反应体系,进行超声共聚.能有效防止次生相的形成,合成的纳米粉体纯度高,结晶细腻而均匀;将硅掺杂的Si-HA纳米粉体与柠檬酸/丙烯酸固化液调制成Si-HAC骨水泥能有效提高其力学性能,尤以4%Si最佳.","authors":[{"authorName":"张超","id":"eee63f3f-c3b7-43f1-8f51-eaaaf5903d5a","originalAuthorName":"张超武"},{"authorName":"周方圆","id":"3a9642f4-da91-4fe2-ae2d-f175915fb919","originalAuthorName":"周方圆"},{"authorName":"王芬","id":"4f94aa7b-653a-49b4-8569-b57bafed87d8","originalAuthorName":"王芬"},{"authorName":"杨军","id":"e87eac8b-ff02-424f-8920-f097fb3e2b3c","originalAuthorName":"杨军"},{"authorName":"肖玲","id":"3b6be882-7c12-4aa8-a94b-76328299d182","originalAuthorName":"肖玲"}],"doi":"","fpage":"42","id":"ff6e3cd8-7943-4207-9bed-6f3cc4c0c426","issue":"22","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"c62304a4-ba80-4243-b956-b7414b3cf11f","keyword":"含硅羟基磷灰石","originalKeyword":"含硅羟基磷灰石"},{"id":"bdbf1cd4-92c2-4f77-84fa-7c5891beaf26","keyword":"超声共聚法","originalKeyword":"超声共聚法"},{"id":"574f5880-1c99-498e-a4a2-81f2326659d7","keyword":"纳米粉体","originalKeyword":"纳米粉体"},{"id":"cafcbd4c-09dc-4c91-bce4-2d411d5046fe","keyword":"固化","originalKeyword":"固化"},{"id":"6fff98f2-3df9-4a1e-b1ea-31fe21387526","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"cldb201022012","title":"Si-HA纳米粉体的超声共聚法制备及其骨水泥的力学性能","volume":"24","year":"2010"},{"abstractinfo":"采用溶胶-凝胶法和超声化学法相结合的方法制备出复合掺杂氧化镧粉体,采用X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)等对其产物进行了表征,并分析了材料的物相结构和显微形貌.实验结果表明,制备氧化镧的最佳烧结温度为750℃,控制适当的工艺条件,能制得结晶发育良好的复合掺杂氧化镧超细粉体;超声波辅助作用有利于促进晶粒细化、均匀致密,提高材料的性能.","authors":[{"authorName":"杨军","id":"9491ed48-3c85-4ddc-a7e5-3ff2019fdc52","originalAuthorName":"杨军"},{"authorName":"张超","id":"bc3e9ef7-c24c-4ad7-9c92-8859ef793acf","originalAuthorName":"张超武"},{"authorName":"肖玲","id":"8851f75a-527b-49e8-a59f-9b90f24bf017","originalAuthorName":"肖玲"}],"doi":"","fpage":"536","id":"7c788f00-9e8f-45f9-a648-ced35e10baa3","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"117fa934-3a99-4320-a6b3-649e28406174","keyword":"氧化镧","originalKeyword":"氧化镧"},{"id":"988b200e-9dda-4a0b-b32e-5e4baac8556b","keyword":"复合掺杂","originalKeyword":"复合掺杂"},{"id":"61816cea-3642-42b0-aa19-f178803a062e","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"e1c74a90-3ede-4c50-af44-43d17645828d","keyword":"超声化学法","originalKeyword":"超声化学法"}],"language":"zh","publisherId":"cldb2010z2146","title":"氧化镧钇氟复合掺杂及性能研究","volume":"24","year":"2010"},{"abstractinfo":"设计并制备四组不同组成的内锡法Nb3Sn单组元线和两组不同结构设计的多芯线.先将所有样品进行210℃/50hr+340℃/25hr的Cu-Sn合金化热处理,接着进行A15相成相热处理.四组单组元线的成相热处理程序是在675oC,700oC和725℃三种温度下热处理100小时和200小时;而两组多芯线的成相热处理程序是在675℃,675℃,700℃和725℃四种温度下热处理128小时和200小时.将所有热处理样品采用X-射线EDS进行A15相组成分布测定,采用SQUID磁化法测定临界温度Tc.所得结果表明,经过足够热处理时间后各种内锡法Nb3Sn超导线的最终A15相组成和Tc与热处理温度、导线复合体组成和结构设计以及第三元素的合金化掺杂无关,而是由这种扩散与固相反应的机制本质所决定的.","authors":[{"authorName":"张超","id":"273110a9-05e5-49b7-af2e-8384194f6b3d","originalAuthorName":"张超武"},{"authorName":"周廉","id":"f7965ac2-4dc2-4c5c-aa6a-62e33587dbdb","originalAuthorName":"周廉"},{"authorName":"","id":"f6d7222f-1153-44f5-92c3-279abb5d1750","originalAuthorName":""},{"authorName":"","id":"94a02581-4cf5-4eb4-ac29-3e44d375bf1c","originalAuthorName":""},{"authorName":"唐先德","id":"d2bfe9d2-bcc1-4a5c-89f2-0316bf3c1848","originalAuthorName":"唐先德"}],"doi":"","fpage":"88","id":"ba3531db-3c3b-4319-9a17-172181b3703f","issue":"2","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"eb2583d1-b0c9-4d35-99a8-72a380714ff9","keyword":"内锡法Nb3Sn超导线","originalKeyword":"内锡法Nb3Sn超导线"},{"id":"6b36ef5d-1055-45b9-b050-81885f90160f","keyword":"A15相组成","originalKeyword":"A15相组成"},{"id":"a035394a-6842-4d24-9db7-2a0b4657ea4f","keyword":"成相热处理","originalKeyword":"成相热处理"},{"id":"e8241daf-7ab1-4193-9932-48e3f5038cdf","keyword":"复合体组成与结构设计","originalKeyword":"复合体组成与结构设计"},{"id":"dd3e9c33-3429-49f6-9339-174e30eb03dc","keyword":"第三元素掺杂","originalKeyword":"第三元素掺杂"}],"language":"zh","publisherId":"dwwlxb201102002","title":"内锡法Nb3Sn超导线A15相组成及Tc的特征研究","volume":"33","year":"2011"}],"totalpage":4,"totalrecord":39}