钢铁研究学报, 2009, 21(8): 30-0.
大载荷螺栓振动摩擦热分析及材料适用性研究
周自强","id":"85ada3d3-0c7c-458a-a479-5d2275cb7b63","originalAuthorName":"周自强"}],"doi":"","fpage":"1","id":"4ccd6094-264d-4c0d-bfbe-dd4a96f43a6c","issue":"10","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"d493f1c5-e8b0-439f-9bb3-3bae5f8534e4","keyword":"电镀Zn-Ni合金","originalKeyword":"电镀Zn-Ni合金"},{"id":"168344fc-5855-41cd-a88a-dc4a91a52b98","keyword":"碱性体系","originalKeyword":"碱性体系"},{"id":"74632077-58e9-487d-97f8-a477721b2e21","keyword":"配位剂","originalKeyword":"配位剂"},{"id":"3263be9f-e666-4939-9c40-848abc84a634","keyword":"光亮剂","originalKeyword":"光亮剂"}],"language":"zh","publisherId":"clbh201110002","title":"碱性镀液中电镀光亮Zn-Ni合金","volume":"44","year":"2011"},{"abstractinfo":"综述了晶界理论的发展概况,包括CSL 点阵,O-点阵和DSC 点阵等晶界模型的物理概念。对晶界研究的若干实验技术及其应用发展进行了简明介绍和评述。对晶界问题的当前研究动向进行了初步归纳。","authors":[{"authorName":"周自强","id":"84cd1184-ae97-46de-8b34-c69a9486ca9b","originalAuthorName":"周自强"}],"categoryName":"|","doi":"","fpage":"1","id":"8237e981-314d-45a9-bdbc-0fe5649b3dc8","issue":"1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"226242a9-0d41-4785-b471-addb91f4a612","keyword":"晶界结构","originalKeyword":"晶界结构"},{"id":"18692191-a711-49c7-ae59-94b9b3de844f","keyword":"bicrystal","originalKeyword":"bicrystal"},{"id":"86d22a6b-8183-4610-9dcd-7877d9cf42a9","keyword":"structure unit","originalKeyword":"structure unit"}],"language":"zh","publisherId":"1005-3093_1989_1_3","title":"晶界研究的现状和发展","volume":"3","year":"1989"},{"abstractinfo":"研究了TiVCr合金的有效储氢量CH与电负性差、原子尺寸参数和外层电子数之间的定量关系,可表示为:TlnCH=0.45922T﹢5044.8(ΔX)2﹢1250.6δ(2)-285.80n(2/3).外层电子数因数对TiVCr合金的CH影响最大,电负性差因数对CH影响最小.当n(2/3)产值在1.98和2.14之间、δ(2)值在0.255和0.288之间、(ΔX)2值在0.0638和0.0765之间时,TiVCr合金的有效储氢量大于2.0wt%.","authors":[{"authorName":"张金龙","id":"c83b3228-a9c4-4e86-b697-403c4aff2f7d","originalAuthorName":"张金龙"},{"authorName":"金航军","id":"7bab9844-d7cf-41fc-b8c8-e307b87978d7","originalAuthorName":"金航军"},{"authorName":"孟祥海","id":"6d1d76fe-204c-4095-bea4-1049fded0056","originalAuthorName":"孟祥海"},{"authorName":"方守狮","id":"676d4019-fb3d-42b0-bf32-d501d8c87583","originalAuthorName":"方守狮"},{"authorName":"周自强","id":"753cd5f1-ec17-47a5-9f63-5dd80d613535","originalAuthorName":"周自强"}],"doi":"","fpage":"1152","id":"982cac70-1efc-4cdf-a327-78b4e47a056a","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"9f9ff175-eff4-475f-b4db-83234f59c657","keyword":"储氢量","originalKeyword":"储氢量"},{"id":"d0b3ee44-9488-40b9-bc57-c8b1e5da37ad","keyword":"TiVCr合金","originalKeyword":"TiVCr合金"},{"id":"2643f3ed-f12a-4dfa-941c-71576c478a0a","keyword":"电负性差","originalKeyword":"电负性差"},{"id":"1d964d74-718f-4fca-b23c-b9048cc34101","keyword":"原子尺寸参数","originalKeyword":"原子尺寸参数"},{"id":"a840c138-76f1-4123-af27-2a6568e2451c","keyword":"外层电子数","originalKeyword":"外层电子数"}],"language":"zh","publisherId":"xyjsclygc201107006","title":"键参数对Ti-V-Cr体心立方结构相合金储氢量的影响","volume":"40","year":"2011"},{"abstractinfo":"研究了TiFe_xM_y 合金氢化物(M 代表Mn,Ni,Co,Zr,Nb,V,Cr 和Al,x≥0.5,y≤0.3)分解自由能变化△G 与形成热△H 和元素原子参数间的关系。结果表明;氢化物分解时的△G可以用合金组成元素的原子尺寸因素、元素的平均电负性差和平均外层电子数的半经验方程式来表示,并由此可推出氢化物分解热△H,计算预报值与实际值相符,相差在5kJ(mol H_2)~(-1)以内。比较三参数对△H 的贡献大小表明,TiFe_xM_y 合金的△H 主要受电负性差或电子因素控制。","authors":[{"authorName":"周自强","id":"a357880a-7ea0-46a2-a364-fa41da6c144d","originalAuthorName":"周自强"},{"authorName":"冯锋","id":"cb05d8a4-43cd-4d42-9be1-8d03f63873d7","originalAuthorName":"冯锋"},{"authorName":"张金龙","id":"5e609f75-3e1e-49db-862d-d90d0fec0707","originalAuthorName":"张金龙"},{"authorName":"平信义","id":"9285bf82-34cc-456b-80aa-e548888b4763","originalAuthorName":"平信义"}],"categoryName":"|","doi":"","fpage":"117","id":"de381f59-2d07-4c6d-80c2-6c0546d3a47c","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"29619758-6aff-4c5c-b0e0-58ff7ab433db","keyword":"计算预报","originalKeyword":"计算预报"},{"id":"c3379590-d226-462e-9033-b772398410b8","keyword":"TiFe_xM_y alloy","originalKeyword":"TiFe_xM_y alloy"},{"id":"cf399137-a4a9-4452-8dd6-f7f20cf7bb86","keyword":"hydride","originalKeyword":"hydride"},{"id":"0e79aa97-26c4-445f-bf2f-522bbaffbd5a","keyword":"enthalpy of formation","originalKeyword":"enthalpy of formation"},{"id":"7631971a-8cbe-4ad6-8545-0416d57bc605","keyword":"mathematical model","originalKeyword":"mathematical model"}],"language":"zh","publisherId":"1005-3093_1991_2_9","title":"TiFe_xM_y氢化物形成焓的数学模型与计算预报","volume":"5","year":"1991"},{"abstractinfo":"研究了二元Cu 合金光反射率R 与光波长λ的关系以及Al,Zn,Mo,Si,Ni,稀土元素、大气停留时间和腐蚀作用的影响。研究表明,在本实验情况下,二元Cu 合金的R-λ关系为:R=a-bλ~(-1/2)估算了光在二元Cu 合金中传播的阻尼系数、固溶在Cu 中的过渡族金属的价电子数.","authors":[{"authorName":"周自强","id":"b2e4f89a-4b4c-46db-abbe-dea54447efe1","originalAuthorName":"周自强"},{"authorName":"田智明","id":"82e38227-d1d6-41eb-8355-370eaff26bb0","originalAuthorName":"田智明"},{"authorName":"王宁珠","id":"f42613c9-4397-482f-a75c-c3c81eb8dd42","originalAuthorName":"王宁珠"}],"categoryName":"|","doi":"","fpage":"500","id":"f0e313cc-f40b-432c-b028-a54692399e81","issue":"6","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"5f78f9e4-e7bc-42e6-9e9f-22c14200657c","keyword":"反射率","originalKeyword":"反射率"},{"id":"ee744f84-d6bf-4aad-9c73-2aa0df06d8b7","keyword":"damper coeffieient","originalKeyword":"damper coeffieient"},{"id":"df6a36ca-598c-4f73-9c48-e8111fcb1b1e","keyword":"copper alloy","originalKeyword":"copper alloy"}],"language":"zh","publisherId":"1005-3093_1989_6_12","title":"二元Cu合金的光反射率与光阻尼系数","volume":"3","year":"1989"},{"abstractinfo":"论述了超高周疲劳研究的背景及意义,总结了近年来超高周疲劳的研究成果包括超高周疲劳的典型特征如S-N曲线、裂纹起源、起裂机理、影响超高周疲劳行为的因素等,介绍了超高周疲劳的常用实验手段,提出了今后超高周疲劳研究的课题.","authors":[{"authorName":"关昕","id":"0ac19842-8b56-426f-8905-2388e7a25b47","originalAuthorName":"关昕"},{"authorName":"孟延军","id":"58d24d51-0717-4882-bcd8-6c2afb28dd18","originalAuthorName":"孟延军"}],"doi":"","fpage":"58","id":"e4637bac-c1ab-4be4-843c-0b2fc9d06e80","issue":"1","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"fc7ed857-e1c0-43de-9636-ad6114993fd8","keyword":"超高周疲劳","originalKeyword":"超高周疲劳"},{"id":"10ad3e45-0a4e-4eb7-9a69-588ccacf882e","keyword":"S-N曲线","originalKeyword":"S-N曲线"},{"id":"8217367e-ada6-4836-a546-fc39c08018ab","keyword":"疲劳裂纹萌生","originalKeyword":"疲劳裂纹萌生"},{"id":"6ef2ce57-4acd-4632-a6d5-c41726a86dba","keyword":"超声疲劳实验","originalKeyword":"超声疲劳实验"}],"language":"zh","publisherId":"gtyj200901018","title":"超高周疲劳的研究进展","volume":"37","year":"2009"},{"abstractinfo":"研究了不同温度下TC17合金低周疲劳性能和断口形貌,确定了不同温度下合金低周疲劳曲线的数学表达式,分析了合金棒材低周疲劳断口形貌特征.","authors":[{"authorName":"张翥","id":"08f7ef9f-76b4-43b4-a22c-5e4c97332d9c","originalAuthorName":"张翥"},{"authorName":"惠松骁","id":"95300b8b-74b1-4a44-9a99-d5da348d9ace","originalAuthorName":"惠松骁"},{"authorName":"路纲","id":"b4d1bce2-6620-453b-ab68-5919f79cf6a5","originalAuthorName":"路纲"}],"doi":"10.3321/j.issn:0412-1961.2002.z1.079","fpage":"267","id":"5245b7d9-ad01-42aa-96ae-965e18ec3e68","issue":"z1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"1ab386e7-9137-42ac-932c-aad72f085293","keyword":"低周疲劳","originalKeyword":"低周疲劳"},{"id":"707dc835-b982-4d1a-8bac-aaf2daa1a891","keyword":"断口形貌","originalKeyword":"断口形貌"},{"id":"84cd2432-b6a6-470a-93bc-ec98a918a3b5","keyword":"TC17钛合金","originalKeyword":"TC17钛合金"}],"language":"zh","publisherId":"jsxb2002z1079","title":"TC17合金低周疲劳性能与低周疲劳断口形貌","volume":"38","year":"2002"},{"abstractinfo":"对高周疲劳和低周疲劳寿命预测模型进行了研究,提出了一种能够将高周疲劳和低周疲劳统一表征的能量形式参量.用统一的能量形式表征参量对高温合金GH141的760℃高周疲劳和低周疲劳数据进行处理,得到理想的能量-寿命方程.用1Cr11Ni2W2MoV钢500℃和粉末盘材料FGH95的600℃高温低周疲劳和高周疲劳数据对统一表征方法进行验证,验证结果表明,用能量形式的表征参量能够得到理想的能量-寿命方程.","authors":[{"authorName":"许超","id":"b736c564-a712-4cae-ba28-e1f545e3fbee","originalAuthorName":"许超"},{"authorName":"张国栋","id":"1c3a219e-8948-44a2-ac77-d7a1db019a04","originalAuthorName":"张国栋"},{"authorName":"苏彬","id":"115a0fbf-8817-41cd-8719-b1cf173341c4","originalAuthorName":"苏彬"}],"doi":"10.3969/j.issn.1001-4381.2007.08.016","fpage":"65","id":"90ae7451-07db-49d8-bc65-8529908ec2cb","issue":"8","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"fa75e230-7af7-47c8-af9d-3a42d6a0957a","keyword":"高周疲劳","originalKeyword":"高周疲劳"},{"id":"fff773bd-ef31-49d2-a540-5c0587429d8e","keyword":"低周疲劳","originalKeyword":"低周疲劳"},{"id":"7e70aa0a-f69e-49d8-90a4-c7e78e1e84d8","keyword":"寿命预测","originalKeyword":"寿命预测"},{"id":"120f5885-b123-425d-9772-e00834ea620b","keyword":"能量表征","originalKeyword":"能量表征"},{"id":"2778e939-7c24-4364-bc09-9b7d01d11edf","keyword":"高温合金","originalKeyword":"高温合金"}],"language":"zh","publisherId":"clgc200708016","title":"高周疲劳和低周疲劳统一的能量表征方法研究","volume":"","year":"2007"},{"abstractinfo":"分析了金属材料超高周疲劳断口形貌特征,介绍了基于Paris公式的裂纹扩展寿命预测模型和基于位错理论的疲劳裂纹萌生寿命预测模型,并结合前期有关金属材料超高周疲劳行为的试验数据,对2种预测模型的误差进行分析.结果表明,基于位错理论的寿命预测模型较为准确;而基于Paris公式的裂纹扩展寿命预测模型,其预测精度随着疲劳寿命的增加而降低,即材料组织缺陷萌生成为疲劳裂纹阶段占据疲劳寿命的绝大部分.在此基础上,提出了超高周疲劳寿命预测的研究方向:疲劳裂纹的萌生机制,特别是裂纹源表面萌生和内部萌生的竞争性机制;建立大样本数据,结合统计学方法,以工程构件的服役安全性和可靠性为基础,精确评价超高周疲劳寿命.","authors":[{"authorName":"宋亚南","id":"a3f57d8d-e363-4060-b147-c679dc69b63c","originalAuthorName":"宋亚南"},{"authorName":"徐滨士","id":"420e93bc-bf6e-4637-8f47-a160b0081bae","originalAuthorName":"徐滨士"},{"authorName":"王海斗","id":"1ae8eda4-1c15-49a9-a0ed-b1d1cf5cb8f5","originalAuthorName":"王海斗"},{"authorName":"张玉波","id":"0da25032-c90c-4137-940f-b98b99e26de9","originalAuthorName":"张玉波"},{"authorName":"邢志国","id":"ba8df743-30b2-407a-86a5-99f41317fc27","originalAuthorName":"邢志国"}],"doi":"","fpage":"1203","id":"46f40732-c34d-4b6a-a141-61b1d14d4a90","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"7079c771-b3ea-4858-b4d1-88626ec086d0","keyword":"超高周疲劳","originalKeyword":"超高周疲劳"},{"id":"b9d90b52-0489-4b16-bee0-245406d58655","keyword":"寿命预测","originalKeyword":"寿命预测"},{"id":"61dc2b24-54c7-4dc5-91cb-2ff12a621d81","keyword":"断口形貌","originalKeyword":"断口形貌"},{"id":"024a9c21-6f1c-4eda-b6ca-94c63c6a8825","keyword":"预测误差","originalKeyword":"预测误差"}],"language":"zh","publisherId":"xyjsclygc201605020","title":"超高周疲劳寿命预测方法探讨","volume":"45","year":"2016"},{"abstractinfo":"研究了铸造Ti-46.5Al-5Nb(原子分数,%)合金的高周疲劳行为.结果表明:Ti-46.5Al-5Nb合金具有较好的室温高周疲劳性能,其疲劳极限σ-1=510 MPa,与合金的断裂强度σb的比值为1.1.试样的形状对Ti-46.5Al-5Nb合金的室温拉伸强度影响较大,由此可以解释合金的疲劳强度与断裂强度的比值大于1.同时,用扫描电镜对合金的高周疲劳断口进行了观察.","authors":[{"authorName":"崔玉友","id":"6d2f0780-4421-413f-81a5-9a1c8faf287d","originalAuthorName":"崔玉友"},{"authorName":"杨锐","id":"21b4654d-c517-41f1-928b-985f08b14dad","originalAuthorName":"杨锐"}],"doi":"10.3321/j.issn:0412-1961.2002.z1.156","fpage":"497","id":"221aa2f4-ff60-4489-8628-d051a4e9f81f","issue":"z1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"a0ac415a-bf8f-48df-9975-1cc4a8e17e5d","keyword":"Ti-46.5Al-5Nb合金","originalKeyword":"Ti-46.5Al-5Nb合金"},{"id":"da3c909c-c444-4c02-b29a-0fe1dd5bf4d5","keyword":"高周疲劳","originalKeyword":"高周疲劳"},{"id":"a237702e-9a16-4d44-a4d9-b5aab4e1ae36","keyword":"疲劳强度","originalKeyword":"疲劳强度"}],"language":"zh","publisherId":"jsxb2002z1156","title":"γ-TiAl合金的高周疲劳行为","volume":"38","year":"2002"}],"totalpage":151,"totalrecord":1506}