欢迎登录材料期刊网

材料期刊网

高级检索

脆性材料的破坏通常是瞬态快速断裂,亚临界慢裂纹扩展特别是宏观慢扩展,很难在实验中观察.它一定程度上制约了玻璃陶瓷等材料的失效过程分析和阻力特性研究.本研究利用MFPA2D(Material Failure Process Analysis)软件成功地模拟了玻璃类脆性材料在平面应力状态下承受单向、双向应力时的亚临界裂纹扩展全过程,着重研究了脆性材料的慢裂纹扩展和扩展速度所受双向应力的影响,并讨论这种影响的机理和作用.通过声发射特性的数值模拟得到脆性材料在单向及双向应力状态下的亚临界裂纹扩展长度-荷载步曲线.结果表明,平行于裂纹面的拉应力对裂纹扩展有一定程度的阻碍作用,而平行于裂纹的压应力对裂纹有驱动效果.该数值实验结果与相关的实验结果取得了较好的一致,表明数值实验的可靠性,从而为脆性材料的可靠性和寿命评价提供理论基础和手段.

The failure of brittle materials such as glass is always unstable. Therefore, it is usually difficult to observe in situ the subcritical crack growth in experiment with a brittle sample. This restricts the analysis of failure process and the study of crack resistance of brittle materials. Whether biaxial stress influences the crack growth of brittle materials is always a controversial issue. The aim of this study is to demonstrate the influence of the stress parallel to the crack plane on subcritical crack growth in brittle materials by numerical code MFPA2D. The mechanism of this influence is also discussed. The curves of subcritical crack extension vs. strain of brittle materials under biaxial and uniaxial stress were numerically obtained through numerical simulation test with acoustic emission characteristics. The results showed that the tensile stress parallel to the crack plane had the effect on crack arrest, while the compressive stress parallel to the crack plane contributed to crack opening for brittle materials in plane stress state. The numerical simulation results were consistent with correlative experimental result, which showed the reliability of the numerical simulation.

参考文献

[1] Mencik J.Strength and Fracture of Glass and Ceramics[M].New York:Elsevier Science Publishing,1992:130.
[2] Kanninen M F;Popelar C H.Advanced Fracture Mechanics[M].New York:Oxford Univeristy Press,1985:145.
[3] Broek D.Elementary Engineering Fracture Mechanics[M].Netherlands:Martinue Nijhoff Press,1987:22.
[4] Steinbrech R W;Bradt R C;Hasselman D P H;Munz D.Fracture Mechanics of Ceramics[M].New York:Plenum Press,1992:187.
[5] Ogawa T Lorca J .[J].Journal of the American Ceramic Society,1994,77(04):961.
[6] Brauun L M;Bennison S J;Lawn B R .[J].Journal of the American Ceramic Society,1992,75(11):3049.
[7] Mai Y W;Lawn B R .[J].Journal of the American Ceramic Society,1987,70(04):2879.
[8] Jacobs DS.;Chen IW. .CYCLIC FATIGUE IN CERAMICS - A BALANCE BETWEEN CRACK SHIELDING ACCUMULATION AND DEGRADATION[J].Journal of the American Ceramic Society,1995(3):513-520.
[9] Eftis J;Subramonian N;Liebowitz H .[J].Engineering Fracture Mechanics,1997,9:753.
[10] Kibler J J;Roberts R .[J].Journal of Engineering for Industry,Transactions of the ASME,1970,92:727.
[11] 唐春安,朱万成,李连崇,刘红元.材料破坏过程中应力分布的数值光弹图[J].力学与实践,2002(05):47-50.
[12] Tang C A .[J].International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,1997,34:249.
[13] 朱万成 .混凝土断裂过程的细观数值模型及其应用[D].东北大学,2000.
[14] 包亦望 .[J].力学学报,1998,30(06):682.
[15] 唐春安 .[J].岩石力学与工程学报,1997,16(04):368.
[16] 包亦望.[J].硅酸盐学报,2000(01):20.
[17] Dill S J;Bennison S J;Dauskardt R H.[J].Journal of the American Ceramic Society,1997(03):773.
[18] Bao Yiwang;Steinbrech E W .[J].Materials Science Letter,1997,16(180):153.
[19] Wang E Z;Shrive N G .[J].Engineering Fracture Mechanics,1995,52(06):1107.
[20] Broek D.Elementary Engineering Mechanics[M].USA:Kluwer Academic Publisher,1986
[21] Steinbrech R W .[J].Fracture Mechanics of Ceramics,1992,9:187.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%