欢迎登录材料期刊网

材料期刊网

高级检索

热电材料是一种能将热能和电能直接相互转换的功能材料.热电器件由于具有结构简单、低价环保、无噪声、使用寿命长等优点,被人们广泛应用在温差发电与半导体制冷技术中.Zn-Sb合金由于其优越的热电性能成为了现阶段最重要的热电材料之一,以ZnSb、Zn4 Sb3两种合金最为常见.新近发现的Zn8Sb7结构,成为了新的研究热点.主要针对常见Zn-Sb合金的晶体结构、性能、制备技术进行了总结,并展望了该材料的应用前景.

参考文献

[1] Zhigang Chen,Guang Han,Lei Yang,Lina Cheng,Jin Zou.Nanostructured thermoelectric materials: Current research and future challenge[J].自然科学进展(英文版),2012(6):535-549.
[2] 张晓军,应鹏展,崔教林,付红,颜艳明.不同Zn含量的GaSb热电半导体及其性能[J].材料科学与工程学报,2011(01):108-111.
[3] Melanie J. Kirkham;Antonio M. dos Santos;Claudia J. Rawn;Edgar Lara-Curzio;JeffW. Sharp;Alan J. Thompson .Ab initio determination of crystal structures of the thermoelectric material MgAgSb[J].Physical review, B. Condensed matter and materials physics,2012(14):144120:1-144120:7.
[4] 刘磊†,张锁良,马亚坤,吴国浩,郑树凯,王永青.平板集热太阳热电器件建模及结构优化[J].物理学报,2013(03):472-477.
[5] John Androulakis;Duck-Young Chung;Xianli Su;Li Zhang;Ctirad Uher;Mercouri G. Kanatzidis .High-temperature charge and thermal transport properties of the n-typethermoelectric material PbSe[J].Physical review, B. Condensed matter and materials physics,2011(15):155207:1-155207:11.
[6] 刘少辉,贾建峰,王娇,胡行,王新昌,刘世江.NiO基氧化物热电材料的合成及其性能[J].材料科学与工程学报,2012(04):518-521.
[7] Zhigang Chen,Guang Han,Lei Yang,Lina Cheng,Jin Zou.Nanostructured thermoelectric materials: Current research and future challenge[J].自然科学进展(英文版),2012(6):535-549.
[8] Wu Z H;Xie H Q .Study on the preparation and properties of polyparaphenylene/LiNi0.5Fe2O4 anocomposite thermoelectric materials[J].Acta Physica Sinica,2012,61(07):076502.
[9] VILUPANUR RAVI;SAMAD FIRDOSY;THIERRY CAILLAT;ERIK BRANDON;KEITH VAN DER WALDE;LINA MARICIC;ALI SAYIR .Thermal Expansion Studies of Selected High-Temperature Thermoelectric Materials[J].Journal of Electronic Materials,2009(7):1433-1442.
[10] 张建,秦晓英,李地,辛红星,宋春军.不同元素替代掺杂化合物M_(0.04)Ti_(0.96)S_2(M=Ni,Al,Mg)的热电性质[J].材料科学与工程学报,2010(02):237-243.
[11] 李妙,霍德璇,付晨光,廖罗兵,程波.NaxCo2O4基复合材料的制备及其热电性能[J].材料科学与工程学报,2013(02):208-211,217.
[12] 金吉,朱铁军,刘晓华,赵新兵.Ag/Sb比对(GeTe)85(AgySb2-yTe3-y)15合金热电性能的影响[J].材料科学与工程学报,2013(02):204-207.
[13] Kanishka Biswas;Jiaqing He;Ivan D. Blum;Chun-I Wu;Timothy P. Hogan;David N. Seidman;Vinayak P. Dravid;Mercouri G. Kanatzidis .High-performance bulk thermoelectrics with all-scale hierarchical architectures[J].Nature,2012(Sep.20 TN.7416):414-418.
[14] Carter F L;Mazelsky R .[J].Journal of Physics and Chemistry of Solids,1964,25(06):571-581.
[15] Eisner R L;Mazelsky R;Tiller W A .[J].APPLIED PHYSICS,1961,32(10):1833-1834.
[16] 韩二静 .ZnO与ZnSb的第一性原理研究[D].重庆大学,2012.
[17] Takashi U;Chinatsu O;Yasutoshi N;Kazuhiro H .Effect of Tellurium Doping on the Thermoelectric Properties of ZnSb[J].Journal of the Japan Institute of Metals,2010,74(02):110-113.
[18] P. H. Michael Bottger;Gregory S. Pomrehn;G. Jeffrey Snyder;Terje G. Finstad .Doping of p-type ZnSb: Single parabolic band model and impurity band conduction[J].Physica status solidi, A. Applications and materials science ePSS,2011(12):2753-2759.
[19] K. Valset;P. H. M. Bottger;J. Tafto;T. G. Finstad .Thermoelectric properties of Cu doped ZnSb containing Zn_(3)P_(2) particles[J].Journal of Applied Physics,2012(2):023703-1-023703-5.
[20] Chinatsu Okamura;Takashi Ueda;Kazuhiro Hasezaki .Preparation of Single-Phase ZnSb Thermoelectric Materials Using a Mechanical Grinding Process[J].Materials transactions,2010(5):860-862.
[21] Sales BC.;Chakoumakos BC.;Keppens V.;Thompson JR.;Mandrus D. .FILLED SKUTTERUDITE ANTIMONIDES - ELECTRON CRYSTALS AND PHONON GLASSES[J].Physical Review.B.Condensed Matter,1997(23):15081-15089.
[22] Mayer H W;Mikhail I;Schuber K .Phases of ZnSb and CdSbN mixtures[J].Less Common Metals,1978,59(01):43-52.
[23] X. B. Zhao;G. S. Cao .A study of Zn_4Sb_3 as a negative electrode for secondary lithium cells[J].Electrochimica Acta,2001(6):891-896.
[24] Souma T;Nakamoto G;Kurisu M;Kato K,Takata M.Synchrotron-radiation X-ray powder diffraction study of a-and β-Zn4Sb3 compounds[A].,2003:282-285.
[25] Benson D;Sankey O F;Haussermann U .Electronic structure and chemical bonding of the electron-poor Ⅱ-Ⅴ semiconductors ZnSb and ZnAs[J].Physical Review B,2011,84(12):125211.
[26] Pomrehn, G.S.;Toberer, E.S.;Snyder, G.J.;Van De Walle, A. .Predicted electronic and thermodynamic properties of a newly discovered Zn_8Sb_7 phase[J].Journal of the American Chemical Society,2011(29):11255-11261.
[27] E. S. Toberer;K. A. Sasaki;C. R. I. Chisholm;S. M. Haile;W. A. Goddard;G. J. Snyder .Local structure of interstitial Zn in β-Zn_4Sb_3[J].physica status solidi(RRL): rapid research letterse,2007(6):253-255.
[28] Fausto Cargnoni;Eiji Nishibori;Philippe Rabiller;Luca Bertini .Interstitial Zn Atoms Do the Trick in Thermoelectric Zinc Antimonide,Zn_4Sb_3:A Combined Maximum Entropy Method X-ray Electron Density and Ab Initio Electronic Structure Study[J].Chemistry: A European journal,2004(16):3862-3870.
[29] G. Jeffrey Snyder;Mogens Christensen;Eiji Nishibori;Thierry Caillat;Bo Brummerstedt Iversen .Disordered zinc in Zn_4Sb_3 with phonon-glass and electron-crystal thermoelectric properties[J].Nature materials,2004(7):458-463.
[30] Zhu T.J.;Zhao X.B. .Transport properties of #beta#-Zn_4Sb_3 prepared by vacuum melting[J].Materials Letters,2000(1):44-48.
[31] Tsutsui M;Zhang L T;Ito K;Yamaguchi M .Effects of indoping on the thermoelectric properties of β-Zn4Sb3[J].INTERMETALLICS,2004,12(7-9):809-813.
[32] 马兵,程苏丹,赵文俞,张清杰.In掺杂β-Zn4Sb3热电材料的制备与电热输运[J].无机材料学报,2010(06):598-602.
[33] Caillat T;Borshchevsky A;Fleurial J P.Thermal conductivity of Zn4-x Cdx Sb3 solid solutions[A].San Francisco,CA,USA,1997
[34] 刘峰;秦晓英 .Ga掺杂Zn4 Sb3体系热电性能的研究[J].功能材料,2007,38(A04):1348-1351.
[35] 毛立鼎 .Zn-Sb基热电材料的微结构及性能研究[D].浙江工业大学,2008.
[36] Caillat T;Fleurial J P;Borshchevsky A .Preparation and thermoelectric properties of semiconducting ZmSb3[J].Journal of Physics and Chemistry of Solids,1997,58(07):1119-1125.
[37] Birkel, C.S.;Mugnaioli, E.;Gorelik, T.;Kolb, U.;Panth?fer, M.;Tremel, W. .Solution synthesis of a new thermoelectric Zn_(1+ x)Sb nanophase and its structure determination using automated electron diffraction tomography[J].Journal of the American Chemical Society,2010(28):9881-9889.
[38] Shaver P J;John B .Thermal and Electronic Transport Properties of p-Type ZnSb[J].Physical Review,1966,141(02):649-663.
[39] Abou Z A;Schneider G .Te-Doped n-Type ZnSb[J].Physica Status Solidi A,1971,6(02):K101-K103.
[40] Arushanov E K .[J].Progress in Crystal Growth and Characterization,1986,13(01):1-38.
[41] Zhao XB.;Li T.;Cao GS. .Electrochemical properties of Zn4Sb3 as anode materials for lithium-ion batteries[J].Journal of Materials Science Letters,2000(10):851-853.
[42] Chinatsu Okamura;Takashi Ueda;Kazuhiro Hasezaki .Preparation of Single-Phase ZnSb Thermoelectric Materials Using a Mechanical Grinding Process[J].Materials transactions,2010(5):860-862.
[43] V. Izard;M.C Record;J.C. Tedenac .Mechanical alloying of a new promising thermoelectric material, Sb_3Zn_4[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2002(1/2):257-264.
[44] Ur SC.;Nash P.;Kim IH. .Mechanical alloying and thermoelectric properties of Zn4Sb3[J].Journal of Materials Science,2003(17):3553-3558.
[45] Xiao, Z. L.;Liu, D.;Wang, C. F.;Cao, Z.;Zhan, X. F.;Yin, Z. L.;Chen, Q. Y.;Liu, H. L.;Xu, F.;Sun, L. X. .Study on the effect of mechanical alloying on properties of Zn-Sb alloy[J].Journal of thermal analysis and calorimetry,2009(2):513-515.
[46] Ur SC;Kim IH;Nash P .Thermoelectric properties of Zn4Sb3 processed by sintering of cold pressed compacts and hot pressing[J].Journal of Materials Science,2007(6):2143-2149.
[47] Venkatasubramanlan R;Edward S;Thomas C'Quinn.Brooks O' et al.Thin-film thermoelectric devices with high roomtemperature figures of merit[J].NATURE,2011,413(6856):597-602.
[48] 周金金,张文丽.热电材料的现状及特点[J].河北理工大学学报(自然科学版),2009(02):77-79,99.
[49] Dashecsky Z;Gelbstein Y;Edry I.Optimization of thermoelectric efficiency in graded materials[A].,2003
[50] Ding-Bang Xiong;Norihiko L. Okamoto;Haruyuki Inui .Enhanced thermoelectric figure of merit in p-type Ag-doped ZnSb nanostructured with Ag_3Sb[J].Scripta materialia,2013(5):397-400.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%