功能材料, 2004, 35(z1): 513-516.
巨磁阻抗效应的非对称特性
钟智勇 1, , 石玉 2, , 刘颍力 3, , 贾利军 海水激活电池阳极材料。概述近几年国内外镁阳极在不同类型海水激活电池中的应用,针对放电过程中金属镁存在的腐蚀产物剥落困难、析氢副反应严重和金属颗粒脱落等问题,探讨合金化、热处理和塑性变形等改性措施对镁阳极电化学性能的影响,为高性能镁阳极材料的制备提供理论依据,同时指出未来镁阳极材料的研究方向。","authors":[{"authorName":"王乃光","id":"e25221ce-abfc-4126-b6e3-5a68a5019f13","originalAuthorName":"王乃光"},{"authorName":"王日初","id":"18b8cbdd-7c6c-4c7d-ae55-05f5ffe97f70","originalAuthorName":"王日初"},{"authorName":"彭超群","id":"2ba610b1-3dae-4bfe-b347-86720e561cd7","originalAuthorName":"彭超群"},{"authorName":"冯艳","id":"b10015f2-286e-4972-9c7c-2a993fd6bb27","originalAuthorName":"冯艳"},{"authorName":"邓敏","id":"637edd54-1f38-4b5b-8c98-15493ff6358f","originalAuthorName":"邓敏"},{"authorName":"张俊昌","id":"93165ef9-f14a-4620-bd02-9fd10c94fa77","originalAuthorName":"张俊昌"}],"doi":"","fpage":"1034","id":"ea5d35e4-5a44-476f-ab88-23c0e8cfdd18","issue":"5","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"58e7d207-a1b3-484b-b93c-2799c3f031a4","keyword":"镁阳极","originalKeyword":"镁阳极"},{"id":"7f386a9a-4447-4306-9bd1-8178f222b2f0","keyword":"放电活性","originalKeyword":"放电活性"},{"id":"82d152f5-11d9-4d99-8004-c667cfa99c2d","keyword":"阳极利用率","originalKeyword":"阳极利用率"},{"id":"67426e84-fcfa-4a70-9b35-9719b0d235cd","keyword":"合金化","originalKeyword":"合金化"},{"id":"e5881bb9-a737-4652-a739-0d829ee11492","keyword":"海水激活电池","originalKeyword":"海水激活电池"}],"language":"zh","publisherId":"zgysjsxb201605012","title":"镁阳极在海水激活电池中的应用","volume":"26","year":"2016"},{"abstractinfo":"为了获得铅含量更低的 Mg?Al?Pb 合金阳极材料,采用浸泡实验及电化学测试技术研究了Mg?9%Al?2.5%Pb(质量分数)合金的腐蚀及放电行为,并与Mg?6%Al?5%Pb合金进行比较。研究表明:与Mg?6%Al?5%Pb相比,更高的Al含量使得Mg?9%Al?2.5%Pb合金具有更低的自腐蚀速率及更高的阳极利用率;由于Pb含量降低,其放电活性有所减弱但仍能满足阳极材料的要求。因此,Mg?9%Al?2.5%Pb合金有望作为海水激活电池阳极的备选材料,并且其具有更低的Pb含量。","authors":[{"authorName":"邓敏","id":"d4f686f6-0ebc-44d9-990b-20f7e9912070","originalAuthorName":"邓敏"},{"authorName":"王日初","id":"d8a853c3-fc30-4ccb-ac97-267e3f818ba8","originalAuthorName":"王日初"},{"authorName":"冯艳","id":"83690b88-2515-46f6-b08e-d2134f570490","originalAuthorName":"冯艳"},{"authorName":"王乃光","id":"edcf6251-2dac-423a-850c-a82e8c4ae604","originalAuthorName":"王乃光"},{"authorName":"王霖倩","id":"f33b2105-f3db-43dc-9eea-be905de6aba1","originalAuthorName":"王霖倩"}],"doi":"10.1016/S1003-6326(16)64330-3","fpage":"2144","id":"4dca265d-52a6-4e29-86b6-dee4d67e4be8","issue":"8","journal":{"abbrevTitle":"ZGYSJSXBEN","coverImgSrc":"journal/img/cover/ZGYSJSXBEN.jpg","id":"757390d2-7d95-4517-96f1-e467ce1bff63","issnPpub":"1003-6326","publisherId":"ZGYSJSXBEN","title":"中国有色金属学报(英文版)"},"keywords":[{"id":"c8b30500-ea3d-423e-8d93-6f79423f331e","keyword":"Mg-Al-Pb合金","originalKeyword":"Mg-Al-Pb合金"},{"id":"8c8bf91c-bb2a-4a10-87bb-17991aaabe6a","keyword":"阳极材料","originalKeyword":"阳极材料"},{"id":"4eed1604-f6ba-49a0-a177-0d9455bd9551","keyword":"自腐蚀速率","originalKeyword":"自腐蚀速率"},{"id":"04882dbe-b40f-4b1c-be1d-fa1894128362","keyword":"利用率","originalKeyword":"利用率"},{"id":"aae2c40b-9d37-456a-a75b-8b34b2e3ed51","keyword":"放电活性","originalKeyword":"放电活性"}],"language":"zh","publisherId":"zgysjsxb-e201608016","title":"海水激活电池阳极材料用Mg-9%Al-2.5%Pb合金的腐蚀及放电性能","volume":"26","year":"2016"},{"abstractinfo":"为研究海水pH值升高对铝-空气-海水电池的铝阳极的腐蚀性能和放电性能的影响,以不同pH值的海水作为介质,采用极化曲线、交流阻抗、恒电流极化曲线和扫描电镜研究了铝合金在不同pH值海水中的腐蚀行为和放电行为。结果表明:随着pH值的升高,铝合金的自腐蚀电位逐渐降低,腐蚀速度加快;海水pH值的升高使铝合金的钝化区间变宽,当pH=9.10时,出现了二次钝化现象;海水pH值的升高导致铝合金阳极懂流放电极化增大,电极电位显著正移,影响电池的放电性能。","authors":[{"authorName":"范汇吉","id":"81e2fc26-cc58-4f6c-ba23-950061b7b720","originalAuthorName":"范汇吉"},{"authorName":"孙虎元","id":"7ea60dbb-d562-43ad-a18c-cc17ea4a75d3","originalAuthorName":"孙虎元"},{"authorName":"王巍","id":"d7d9d818-5f47-4d91-bf32-11b769b62769","originalAuthorName":"王巍"},{"authorName":"臧贝妮","id":"df561b21-a6df-4515-8c17-8e0d7d278e82","originalAuthorName":"臧贝妮"},{"authorName":"孙丽娟","id":"2d44a5ac-b38b-4d43-bca6-81654f58b104","originalAuthorName":"孙丽娟"}],"doi":"","fpage":"26","id":"050df570-5d91-43a8-bd67-423809180382","issue":"10","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"f9326d7d-0e15-4178-8ddc-48e1c6726f0f","keyword":"电池","originalKeyword":"电池"},{"id":"59a65bd5-3bdb-49d5-8113-dff1463d90ac","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"9bc230be-edac-4bf4-8a32-b7688efeb503","keyword":"阳极","originalKeyword":"阳极"},{"id":"a5e26bbf-fd02-4ce2-b395-80b0d6ca49c2","keyword":"海水pH值","originalKeyword":"海水pH值"},{"id":"8ad317b2-918c-4040-bead-5ac95b843cf4","keyword":"腐蚀性能","originalKeyword":"腐蚀性能"},{"id":"3e51cc81-74b3-4565-878b-022c1d756c21","keyword":"放电性能","originalKeyword":"放电性能"}],"language":"zh","publisherId":"clbh201110009","title":"海水pH值对铝-空气-海水电池阳极性能的影响","volume":"44","year":"2011"},{"abstractinfo":"镁电极材料具有成本低、无毒、无污染、放电电压平稳、比能量及比功率高、资源丰富、可再生等诸多优点,但用作海水电池阳极仍存在自腐蚀速率大、阳极利用率低等问题.介绍了镁海水电池的种类,综述了近年来海水电池中镁阳极材料的研究进展,并展望了今后提高镁阳极材料性能的发展方向.","authors":[{"authorName":"林亚青","id":"aba39b54-9ce8-4f46-83c3-1b5262a8fce8","originalAuthorName":"林亚青"},{"authorName":"王为","id":"40422325-78c1-476c-aea4-758f150a992d","originalAuthorName":"王为"},{"authorName":"桑林","id":"a4414140-7413-483b-b81f-56aced07b58f","originalAuthorName":"桑林"}],"doi":"","fpage":"38","id":"13e2fc85-d350-4109-866e-ed0f79a56bd2","issue":"11","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"6de07940-8046-406f-aaf2-6ca7172ecb5c","keyword":"海水电池","originalKeyword":"海水电池"},{"id":"f4787726-eed8-4145-ae6f-0fcab48664ea","keyword":"镁阳极","originalKeyword":"镁阳极"},{"id":"0debc20c-6350-4134-a6cc-316cfa7c6caf","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"3d3d2b18-cc18-42bb-b509-5e3c35ba99f9","keyword":"合金元素","originalKeyword":"合金元素"}],"language":"zh","publisherId":"clbh201511012","title":"镁海水电池及镁阳极材料的研究进展","volume":"48","year":"2015"},{"abstractinfo":"利用电化学阻抗测试技术等,研究了X70钢在滨海盐渍土与海水构成的宏电池中的腐蚀行为。结果表明,构成宏电池之后,海水侧X70钢一直作为宏电池的阳极处于被腐蚀状态,其腐蚀速率为自然腐蚀速率的25.3倍,腐蚀过程主要受阴极反应控制;由于腐蚀产物膜和氯离子的双重作用使宏电池腐蚀速率先有一定程度的降低,然后迅速升高,再有所降低并趋于稳定。试验还发现土壤海水构成的宏电池的电动势并没有表现出像常规土壤宏电池电动势那样的先升高后降低的趋势,而是先有一定程度的降低,然后迅速升高后趋于稳定,该过程主要受极化电阻的影响。","authors":[{"authorName":"郝宏娜","id":"c0dbfdef-b015-48b2-a1c2-244a1bea412d","originalAuthorName":"郝宏娜"},{"authorName":"李自力","id":"19fe6519-6155-4b0c-b977-c7935b284913","originalAuthorName":"李自力"},{"authorName":"王太源","id":"873c241c-741a-4f0a-83a5-bb7d94f3e02d","originalAuthorName":"王太源"},{"authorName":"杜松林","id":"9f2f25bd-f2d7-4759-82b5-7a9a4c21a14b","originalAuthorName":"杜松林"},{"authorName":"王帅华","id":"196244c6-c633-4260-8966-94a4987c891b","originalAuthorName":"王帅华"}],"doi":"","fpage":"273","id":"3319cab4-4e65-451c-9044-091ca040a8c5","issue":"4","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"33179eae-128b-48d6-80a2-114c380cb69e","keyword":"宏电池腐蚀","originalKeyword":"宏电池腐蚀"},{"id":"5095a6d9-94ab-4343-9afb-c8d44e648fa3","keyword":"海水","originalKeyword":"海水"},{"id":"8641e8ed-69a4-44fb-b65f-15906eeb5a8e","keyword":"盐渍土","originalKeyword":"盐渍土"},{"id":"3387b721-de7e-4e32-986d-54074e1d194c","keyword":"X70钢","originalKeyword":"X70钢"},{"id":"ee5dee64-6690-4042-bcac-07054ba69dd7","keyword":"电化学阻抗谱","originalKeyword":"电化学阻抗谱"}],"language":"zh","publisherId":"fsyfh201204002","title":"X70钢的滨海盐渍土一海水宏电池腐蚀","volume":"33","year":"2012"},{"abstractinfo":"研制了新型Mg-Hg-X合金阳极材料,用扫描电镜(SEM)、能谱、X-射线衍射(XRD)和电化学测试等方法分析了镁合金阳极材料在海水介质中腐蚀前后的微观结构、表面形貌及表面元素的组成,研究了Mg-Hg-X合金阳极的溶解过程及活化机理.结果表明:在放电初期,Mg-Hg-X合金阳极材料中的第2相粒子随点腐蚀的发生直接脱落,形成腐蚀坑,随后Mg-Hg-X合金阳极溶解在介质中的合金元素离子与基体镁发生反应,再沉积于镁阳极材料表面的点蚀孔中,形成Hg、X的沉积层,破坏钝化膜的结构,降低了Mg-Hg-X合金阳极极化.使电极电位负移,同时沉积的具有高析氢过电位的Hg、X抑制了析氢腐蚀.","authors":[{"authorName":"马正青","id":"434b4fea-6e0d-4882-a1ce-8856ba14445e","originalAuthorName":"马正青"},{"authorName":"庞旭","id":"81f3e755-efe9-4e56-a3ef-e1a7a97d9fc7","originalAuthorName":"庞旭"},{"authorName":"左列","id":"aed1faa3-227b-4541-be8e-92a142eb6f85","originalAuthorName":"左列"},{"authorName":"曹琳","id":"da5af75e-106b-49ef-8e09-7dc00af80960","originalAuthorName":"曹琳"},{"authorName":"曾苏民","id":"b379b8a5-662e-4dfa-8a03-aa81dc0e027e","originalAuthorName":"曾苏民"}],"doi":"10.3969/j.issn.1001-3660.2008.01.002","fpage":"5","id":"138969eb-ab42-4c07-801d-62ed31fa0575","issue":"1","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"62279e64-9902-4b38-b5fc-dbced77a8a7a","keyword":"海水","originalKeyword":"海水"},{"id":"aa50c5a1-e13f-4329-bd1a-93a3bf8c975c","keyword":"电池","originalKeyword":"电池"},{"id":"dd2db55f-1b9e-4be1-b018-51702cfcff44","keyword":"镁阳极","originalKeyword":"镁阳极"},{"id":"d1505252-52fe-400f-a206-82c13b3681d5","keyword":"点腐蚀","originalKeyword":"点腐蚀"},{"id":"02af4c9b-a5d9-4a60-be7d-3787ddd9672e","keyword":"活化机理","originalKeyword":"活化机理"}],"language":"zh","publisherId":"bmjs200801002","title":"镁海水电池阳极活化机理研究","volume":"37","year":"2008"},{"abstractinfo":"三十年前发现,生物玻璃能与骨形成骨键结合.这种特殊的材料已经有超过15年的临床应用,并有数以千计的成功病例.研究表明,骨的键合及骨再生和修复(骨形成作用)涉及玻璃表面的离子快速交换反应、生物活性表面反应层的成核和生长、由可溶硅和钙组成的临界浓度的离子溶解产物的释放.生物活性玻璃的分子生物学机理研究表明,它的生物活性响应看起来是由基因控制的.具有骨促进作用的A类生物活性玻璃通过直接对那些调节诱发细胞周期开始和进程的基因的直接控制,从而加强了其骨形成和促进作用.不能够形成新骨的细胞从细胞总体中被消除,这一特征是当成骨细胞在生物惰性材料或者B类生物活性材料培养时所没有的.骨前细胞细胞周期的基因调控生物学结果是成骨纲胞的快速繁殖和分裂,这也导致了骨的迅速再生. 对生物活性玻璃基因基础的理解,可以为设计新一代活化基因的玻璃材料、以及新一代活化基因的组织工程用生物降解支架材料提供重要的依据.如果我们能用玻璃激活基因,可以肯定,有一天我们就能用玻璃来控制基因.","authors":[{"authorName":"L.L.Hench","id":"262f1039-b87f-48ba-be01-90480dced01f","originalAuthorName":"L.L.Hench"},{"authorName":"I.Xynos","id":"7da5d76b-0713-43f0-89e4-cd40a91b1276","originalAuthorName":"I.Xynos"},{"authorName":"A.Edgar","id":"b22e6287-ed0c-4b56-9691-6872b4778f7e","originalAuthorName":"A.Edgar"},{"authorName":"L.Buttery","id":"a7901a9f-192c-4bf8-b365-5f0cf32c07cc","originalAuthorName":"L.Buttery"},{"authorName":"J.Polak","id":"e9d34b44-ab60-4f9a-90b4-6a2e0caa3e5d","originalAuthorName":"J.Polak"},{"authorName":"钟吉品","id":"83ccba60-5c2a-402a-a7de-9667ce598e78","originalAuthorName":"钟吉品"},{"authorName":"刘宣勇","id":"f8d5f99e-4ce6-4e2f-a504-f09d2aba2579","originalAuthorName":"刘宣勇"},{"authorName":"常江","id":"bb2a3167-600f-4aed-978c-c71fd28fa69d","originalAuthorName":"常江"}],"categoryName":"|","doi":"","fpage":"897","id":"0169665f-cd37-4468-8f06-a52cc14e25c8","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"d860508e-1800-4c38-90ec-547a1d5b1b45","keyword":"生物玻璃","originalKeyword":"生物玻璃"},{"id":"c5e5c04e-3d1f-4d1c-b3c0-9280ba9ca197","keyword":" gene activation","originalKeyword":" gene activation"},{"id":"7eee5d91-ea9b-4bae-be6a-5e72c34eb526","keyword":" soluble silicon","originalKeyword":" soluble silicon"},{"id":"7f30c638-bbc7-4b64-8b58-d97cdc5a1bfb","keyword":" tissue regeneration","originalKeyword":" tissue regeneration"}],"language":"zh","publisherId":"1000-324X_2002_5_11","title":"激活基因的玻璃","volume":"17","year":"2002"},{"abstractinfo":"三十年前发现,生物玻璃能与骨形成骨键结合.这种特殊的材料已经有超过15年的临床应用,并有数以千计的成功病例.研究表明,骨的键合及骨再生和修复(骨形成作用)涉及玻璃表面的离子快速交换反应、生物活性表面反应层的成核和生长、由可溶硅和钙组成的临界浓度的离子溶解产物的释放.生物活性玻璃的分子生物学机理研究表明,它的生物活性响应看起来是由基因控制的.具有骨促进作用的A类生物活性玻璃通过直接对那些调节诱发细胞周期开始和进程的基因的直接控制,从而加强了其骨形成和促进作用.不能够形成新骨的细胞从细胞总体中被消除,这一特征是当成骨细胞在生物惰性材料或者B类生物活性材料培养时所没有的.骨前细胞细胞周期的基因调控生物学结果是成骨细胞的快速繁殖和分裂,这也导致了骨的迅速再生.对生物活性玻璃基因基础的理解,可以为设计新一代活化基因的玻璃材料、以及新一代活化基因的组织工程用生物降解支架材料提供重要的依据.如果我们能用玻璃激活基因,可以肯定,有一天我们就能用玻璃来控制基因.","authors":[{"authorName":"L.L. Hench","id":"60ae44f0-df21-410f-89c9-2528a8a849a1","originalAuthorName":"L.L. Hench"},{"authorName":"I. Xynos","id":"14f941c0-7ae3-4bd4-9c1f-6c9a96f733be","originalAuthorName":"I. Xynos"},{"authorName":"A. Edgar","id":"93734f8e-48c3-4ec0-8076-8d766f8f7cad","originalAuthorName":"A. Edgar"},{"authorName":"L. Buttery","id":"dde60b58-8603-40f8-b069-1b5f0e268c94","originalAuthorName":"L. Buttery"},{"authorName":"J. Polak","id":"dfe32c16-0a18-4886-937e-56ad8d5be2d0","originalAuthorName":"J. Polak"},{"authorName":"钟吉品","id":"9667fb92-4a42-4b5e-8966-a237df8a0cac","originalAuthorName":"钟吉品"},{"authorName":"刘宣勇","id":"411e5242-6e8f-4e08-a6a8-43d1a8d48b25","originalAuthorName":"刘宣勇"},{"authorName":"常江","id":"c89d9465-b370-44f5-babc-ef1aaaaffeb4","originalAuthorName":"常江"}],"doi":"10.3321/j.issn:1000-324X.2002.05.001","fpage":"897","id":"c15f2a34-c232-4a8d-894e-d93e5315bd63","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"9555aa96-9fc6-4ca3-b9d2-e3e280cec210","keyword":"生物玻璃","originalKeyword":"生物玻璃"},{"id":"510f6744-50d0-4749-824a-a110867399eb","keyword":"基因活化","originalKeyword":"基因活化"},{"id":"3b39838e-f918-4c6f-8dd5-bfc673f7531d","keyword":"溶解硅","originalKeyword":"溶解硅"},{"id":"63b8a7f7-a5f2-4c80-ab7c-83a38c78f0dd","keyword":"组织工程","originalKeyword":"组织工程"}],"language":"zh","publisherId":"wjclxb200205001","title":"激活基因的玻璃","volume":"17","year":"2002"},{"abstractinfo":"碱激活水泥是一种不同于普通硅酸盐水泥的胶凝材料,简要评述了碱激活水泥的性能特点和其强度发展的影响因素,并介绍了碱激活水泥的研究进展,分析了碱激活水泥存在的问题,提出了相应的解决方案.","authors":[{"authorName":"代新祥","id":"34aaa8fd-3152-4b74-bbb7-5ea5374f93c2","originalAuthorName":"代新祥"},{"authorName":"文梓芸","id":"1f764d8f-364f-421e-bf34-b35e59652e7e","originalAuthorName":"文梓芸"}],"doi":"","fpage":"42","id":"4dc52899-3d2d-4c99-8686-004a7f43e74b","issue":"9","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8752ea7e-96e7-4b24-817c-c38f4dc5c5e9","keyword":"碱激活水泥","originalKeyword":"碱激活水泥"},{"id":"b9276b83-0607-420b-abe1-f8616019a14e","keyword":"水化机理","originalKeyword":"水化机理"},{"id":"9236e4b2-e3dc-4aa7-b790-70362a51116a","keyword":"碱骨料反应","originalKeyword":"碱骨料反应"}],"language":"zh","publisherId":"cldb200109013","title":"碱激活水泥研究进展","volume":"15","year":"2001"},{"abstractinfo":"通过X射线光电子能谱仪(XPS)对ZrVFe吸气剂的激活过程进行了研究.结果表明:暴露于大气的吸气剂表面覆盖着一层CO2, O2及碳氢化合物,合金表面中的锆和钒主要以氧化态存在.当吸气剂置于高真空进行激活时,钒的氧化物在较低的温度(200~300 ℃)下被还原,并且还原比例高于锆的氧化物.在激活温度为300 ℃至340 ℃的过程中,表面大量的ZrO2和VO2逐渐减少而被还原为亚氧化物和金属态.激活过程还导致了在表面近金属态锆的富集,以及部分金属碳化物的生成.","authors":[{"authorName":"顾为","id":"05eb9ec3-36fd-4baf-9728-d60a32e195a4","originalAuthorName":"顾为"},{"authorName":"熊玉华","id":"40fed150-ac39-421b-bb3a-be730050c324","originalAuthorName":"熊玉华"},{"authorName":"杜军","id":"cfd1f2de-59c1-428c-95d3-26ecfb3e6340","originalAuthorName":"杜军"},{"authorName":"毛昌辉","id":"de4e9725-5c3d-4e4a-a48a-cbff35f59544","originalAuthorName":"毛昌辉"},{"authorName":"尉秀英","id":"0965fc5c-bab5-4b3b-965a-ea10b7f79712","originalAuthorName":"尉秀英"},{"authorName":"秦光荣","id":"29e5a425-91d7-462a-9f55-8bdf5e19a908","originalAuthorName":"秦光荣"}],"doi":"10.3969/j.issn.0258-7076.2007.04.020","fpage":"501","id":"d186eb14-5fff-40e7-9009-bd8954c8779a","issue":"4","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"89863ec5-e40e-436c-86e5-a32ea655b58d","keyword":"锆钒铁","originalKeyword":"锆钒铁"},{"id":"71637269-bccb-4eab-a323-4fbd43f1db90","keyword":"非蒸散型吸气剂","originalKeyword":"非蒸散型吸气剂"},{"id":"deab7afc-3edc-4a80-bb2a-8774a1541a81","keyword":"激活过程","originalKeyword":"激活过程"},{"id":"8da5adff-7e47-4ce4-a41b-5c247bb8229a","keyword":"X射线光电子能谱","originalKeyword":"X射线光电子能谱"}],"language":"zh","publisherId":"xyjs200704020","title":"ZrVFe吸气剂激活过程研究","volume":"31","year":"2007"}],"totalpage":723,"totalrecord":7224}