欢迎登录材料期刊网

材料期刊网

高级检索

为解决供电容量需求不断增加与城市新建配电电缆线路困难的矛盾,需要提高现有配电电缆的输送能力,而合理利用应急负荷载流量可以动态提高电缆输电能力。为此开发了10 kV XLPE电缆应急负荷载流量计算软件;通过现场应急负荷载流量试验,验证了软件计算的正确性。研究电缆线路应急负荷载流量与电缆负荷状态及应急时间的关系,以及应急负荷载流量与敷设回路数的关系,并进行应急载流量的应用研究。结果表明:应急负荷载流量大于持续负荷载流量;给定的应急时间越短,对应的应急负荷载流量越大;当前负荷电流越低,对应的应急负荷载流量越大;随着回路数的增加,应急负荷载流量减小,但短时载流能力的效果更突出。在运行阶段,应急负荷载流量可用于提高电缆的短时载流能力;在电缆线路设计阶段,可以减小电缆截面或回路数,提高电缆线路的经济性;应急负荷载流量应用在电缆应急故障中,可以减少停电转负荷操作,极大提高供电可靠性。

In order to solve the contradiction between the increasing demand of power supply and the difficulty of building new distribution cable lines, we need to increase the transmission capacity of existing distribution cables, and we can increase the cable transmission capacity dynamically by using emergency load ampacity rationally. So a calculation software of emergency ampacity for 10 kV XLPE cable was developed, and the calculation software was proved to be correct by experiments. The relationship among the emergency load ampacity, load state of cable, and emergency time, and the relationship between emergency load ampacity and loops were studied. The application of emergency load ampacity was studied. The results show that the emergency load ampacity is higher than the continuous load ampacity. The shorter the emergency time, the bigger the emergency load ampacity is. The lower the operating current, the bigger the emergency load ampacity is. With the increase of loops, the emergency load ampacity decreases, but the current-carrying capacity at short time is more prominent. At operation stage, emergency load ampacity can be used to improve the current-carrying capacity of cables at short time. At the design stage of cable line, the emergency load ampacity can be used to decrease the cross-section or the number of loops of cable. When the emergency load ampacity is applied in the fault cable, the outage can be reduced, and the reliability of power supply is improved greatly.

参考文献

[1] 刘刚,雷成华.提高单世电缆短时负荷载流量的试验分析[J].高电压技术,2011(05):1288-1293.
[2] 雷成华,刘刚,阮班义,刘毅刚.根据导体温升特性实现高压单芯电缆动态增容的实验研究[J].高电压技术,2012(06):1397-1402.
[3] 杨文英 .电力电缆温度在线监测系统的研究[D].东北电力大学,2008.
[4] 张尧,周鑫,牛海清,王晓兵,汤毅,赵健康,樊友兵.单芯电缆热时间常数的理论计算与试验研究[J].高电压技术,2009(11):2801-2806.
[5] Yenchek M.R.;Kovalchik P.G. .Thermal characteristics of energized shielded drag and an unshielded reeled trailing cable[J].IEEE Transactions on Industry Applications,1991(4):791-796.
[6] Garniwa I;Burhani A.Thermal Incremental and Time Con-stant Analysis on 20kV XLPE Cable with Current Vary[A].Bali,Indonesia,2006
[7] Ohata K.;Sakurai S. .Transient temperature rise of tunnel for power cables[J].IEEE Transactions on Power Delivery,1990(2):745-752.
[8] 周鑫 .单芯电力电缆导体温度计算及试验研究[D].广州:华南理工大学,2010.
[9] 雷成华 .高压单芯电缆动态增容的理论分析与实验研究[D].广州:华南理工大学,2012.
[10] 刘毅刚,罗俊华.电缆导体温度实时计算的数学方法[J].高电压技术,2005(05):52-54.
[11] IEC 60853, Calculation of the Cyclic and Emergency Cur-rent Rating of Cables[S].
[12] 马国栋.电线电缆载流量[M].北京:中国水利水电出版社,2003
[13] IEC 60287-1-1, Calculation of Current Rating of Electric Cables Part 1:Current Rating Equations(100% Load Fac-tor)and Calculation of Losses Section[S].
[14] IEC 60287-1-2, Calculation of Current Rating of Electric Cables Part 1:Current Rating Equations(100% Load Fac-tor)and Calculation of Losses Section Sheath Eddy Cur-rent Loss Factor for Two Circuits in Flat Formation[S].
[15] 汤毅,王晓兵,陈燕萍,牛海清,张尧,樊友兵,赵健康.10 kV三芯交联电缆载流量的试验研究[J].高电压技术,2009(11):2807-2812.
[16] 赵健康,姜芸,杨黎明,徐林华.中低压交联电缆密集敷设载流量试验研究[J].高电压技术,2005(10):55-58.
[17] 牛海清,周鑫,王晓兵,张尧,汤毅,樊友兵,赵健康.外皮温度监测的单芯电缆暂态温度计算与试验[J].高电压技术,2009(09):2138-2143.
[18] 张尧,周鑫,牛海清,王晓兵,汤毅,赵健康,樊友兵.单芯电缆热时间常数的理论计算与试验研究[J].高电压技术,2009(11):2801-2806.
[19] Chen C;Niu H;You Y.Experimental Revision of the Multi-circuit Ampacity Correction Factor of Direct Bur-ied 10kV Three-core Cables[A].,2012:1013-1016.
[20] 陈诚 .电缆沟敷设10kV三芯电缆温度场计算及其试验研究[D].广州:华南理工大学,2012.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%