欢迎登录材料期刊网

材料期刊网

高级检索

对热丝法化学气相沉积金刚石膜过程的气氛进行了模拟与分析.使用GRI-Mech3.0甲烷燃烧过程C/H/O/N四元体系热化学反应机理和动力学数据,模拟并分析了HFCVD金刚石膜的C/H气相化学反应,通过对反应流的简单模拟得到了衬底位置气相组成,结果与前人实验数据吻合.探讨了灯丝温度、碳源浓度和碳源种类等因素变化对衬底位置气相组成的影响.结果表明甲基是金刚石膜生长最主要的前驱基团,其作用远高于乙炔,而超平衡态原子氢的存在对金刚石膜的质量至关重要.

The paper simulated and analyzed gas phase environment in diamond films growth by hot filament chemical vapor deposition(HFCVD). GRI-Mech3.0, a detailed thermochemical
reaction mechanism of methane combustion chemistry, was used to simulate C/H gas chemistry in HFCVD diamond films reactors. By simply simulating the reactive flow,
the gas composition at the position of the substrate was obtained, which agrees well with other’s experimental results. The influences of filament temperature,
carbon-contained gas concentration and hydrocarbon precursor gases in feed on gas phase and diamond films growth were discussed. The results suggest that CH3
other than C2H2 is the dominant diamond films growth precursor in HFCVD, while H superequilibrium above substrate is important for good diamond films growth.

参考文献

[1] ] Yarbrough W A, Messier R. Science, 1990, 247: 688--696.
[2] Lee S T, Lin Z D, Jiang X. Mater. Sci. Eng. R, 1999, 25(4): 123--154.
[3] Matsumoto S. Thin Solid Films, 2000, 368: 231--236.
[4] Chu C J, D’Evelyn M P, Hauge R H, et al. J. Appl. Phys., 1991, 70(3): 1695--1705.
[5] Kondoh E, Ohta T, Mitomo T, et al. J. Appl. Phys., 1992, 72(2): 705--711.
[6] May P W, Everitt N M, Trevor C G, et al. Appl. Surf. Sci., 1993, 68: 299--305.
[7] 崔景彪, 马玉蓉, 方荣川(Cui J B, et al). 高压物理学报(Chinese Journal of High Pressure Physics), 1996, 10(2): 151--156.
[8] Song G H, Sun C, Wang B, et al. Mater. Lett., 2001, 48: 8--14.
[9] 李灿华, 廖源, 常超, 等(Li C H, et al). 无机材料学报(Journal of Inorganic Materials), 2001, 16(1): 81--86.
[10] Yu J, Huang R F, Wen L S, et al. Mater. Sci. Eng. B, 1999, 57: 255--258.
[11] Tsang R S, May P W, Ashfold M N. Diamond Relat. Mater., 1999, 8: 242--245.
[12] Klages C P. Appl. Phys. A, 1993, 56(6): 513--526.
[13] McMaster M C, Hsu W L, Coltrin M E, et al. J. Appl. Phys., 1994, 76(11): 7567--7577.
[14] Frenklach M, Wang H. Phys. Rev. B, 1991, 43(2): 1520--1545.
[15] Mankelevich Y A, Suetin N V, Ashfold M N R, et al. Diamond Relat. Mater., 2001, 10: 364--369.
[16] Kondoh E, Tanaka K, Ohta T. J. Appl. Phys., 1993, 74(7): 4513--4520.
[17] Ruf B, Behrendt F, Deutschmann O, et al. J. Appl. Phys., 1996, 79(9): 7256--7263.
[18] Smith G P, Golden D M, Fremklach M, et al. GRI-Mech3.0, http://www.me.berkeley.edu/grimech/
[19] Lommatzsch U, Wahl E H, Owano T G, et al. Chem. Phys. Lett., 2000, 320: 339--344.
[20] Coltrin M E, Kee R J, Rupley F M. Int. J. Chem. Kinet., 1991, 23: 1111--1128.
[21] Debroy T, Tankala T, Yarbrough W A, et al. J. Appl. Phys., 1990, 68(5): 2424--2432.
[22] Hsu W L. J. Appl. Phys., 1992, 72(7): 3102--3109.
[23] Lee S S, Minsek D W, Vestyck D J, et al. Science, 1994, 263: 1596--1598.
[24] 刘靖尧, 丁益宏, 刘波, 等(Liu J Y, et al). 高等学校化学学报(Chem. J. Chin. Univ.), 2000, 21(3): 444--447.
[25] 张贵峰, 王永欣, 耿东生, 等(Zhang G F, et al). 微细加?工技术(Microfabrication Technology), 1997, 1: 65--69.
[26] 万永中, 张志明, 沈荷生, 等(Wan Y Z, et al). 无机材料学报(Journal of Inorganic Materials), 1999, 14(6): 840--846.
[27] Chang C, Liao Y, Wang G Z, et al. Proceedings of the Inter. Conf. on Engineering and
Technology Sciences 2000, A2:475-478, New World Press, 2000
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%