材料导报, 2006, 20(9): 93-97.
机械合金化与非晶合金材料的研究进展
吕俊 1, , 陈晓闽 2, , 黄东亚 3, , 陈晓虎 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用水热法制备了立方相ZnSe负载的锐钛矿型TiO3纳米带复合材料.在140℃下反应6h制得的产物是六方相ZnO负载的TiO2纳米带,但此样品再在160℃下反应6h,则获得的产物是ZnSe负载的TiO2纳米带;若在140℃下将反应时间延长至24h,只有少量ZnO转变为ZnSe.紫外-可见吸收测试结果表明,负载的ZnSe对TiO2起到了可见光光敏化作用;可见光催化测试结果表明,ZnSe在TiO2纳米带的负载对罗丹明B的光催化降解活性起到一定程度的增强作用,但随着ZnSe负载量的增大,光催化降解活性显著降低.","authors":[{"authorName":"周吉","id":"f8f88c66-271a-4c8c-bc86-bea762d96465","originalAuthorName":"周吉"},{"authorName":"嵇天浩","id":"07f2fda0-6aae-4ba2-ab4e-cd66ae30da83","originalAuthorName":"嵇天浩"},{"authorName":"李海娇","id":"d4347c05-2b92-48f6-9e16-198b69d2a268","originalAuthorName":"李海娇"},{"authorName":"崔丽凤","id":"e5c79fb2-dbeb-4ead-8fa7-f51ba0aa1418","originalAuthorName":"崔丽凤"},{"authorName":"孙家跃","id":"97b0485c-33ca-4ac3-a0a7-7ec6aa13854d","originalAuthorName":"孙家跃"}],"doi":"","fpage":"540","id":"03950a22-3e7e-494f-ad4e-67fa54c74007","issue":"z3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"bb4a2a2f-cf6c-4486-b960-78e668107d79","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"77ae209f-d0fe-4236-b9f5-d48851e8032b","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"0b0ff644-2c22-4fa3-bd9c-0e414be00707","keyword":"ZnSe负载","originalKeyword":"ZnSe负载"},{"id":"7b957690-57ef-47a2-9db7-5cbf03df00bd","keyword":"TiO2纳米带","originalKeyword":"TiO2纳米带"},{"id":"b86815ae-67c4-4a7a-9c73-3464460394dd","keyword":"光催化作用","originalKeyword":"光催化作用"}],"language":"zh","publisherId":"gncl2010z3044","title":"负载有ZnSe的TiO2纳米带复合材料的制备及其可见光催化性能","volume":"41","year":"2010"},{"abstractinfo":"简述了ZnSe体单晶熔体生长、气相生长、溶液生长和固相再结晶技术以及ZnSe的基本理化性质,分析并认为这些基本理化性质对ZnSe单晶生长过程控制存在不同程度的影响,理解这些性质并将其应用于ZnSe晶体生长过程工艺参数的控制,对获得高质量大尺寸ZnSe单晶十分重要.分析了不同方法的工艺与相应ZnSe单晶研究现状及发展趋势.","authors":[{"authorName":"李焕勇","id":"e98c88de-ecce-4765-bad0-3224259469d4","originalAuthorName":"李焕勇"},{"authorName":"介万奇","id":"edd9d4ba-1ef2-44d4-8f5e-4ecad34608d0","originalAuthorName":"介万奇"}],"doi":"","fpage":"7","id":"ea3c1341-59ee-4c3a-ae18-89bbb8055385","issue":"9","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"25832fb0-c5df-4219-9981-71ce5f8985f9","keyword":"基本理化性质","originalKeyword":"基本理化性质"},{"id":"44cb289f-449d-4b64-806d-d3367d03a46c","keyword":"体单晶生长技术","originalKeyword":"体单晶生长技术"},{"id":"8168f311-ed9c-435c-891c-fe7a5ecd38aa","keyword":"ZnSe晶体","originalKeyword":"ZnSe晶体"}],"language":"zh","publisherId":"cldb200209003","title":"ZnSe体单晶生长技术","volume":"16","year":"2002"},{"abstractinfo":"采用物理气相输运法对ZnSe(4N)多晶原料在850℃±10℃进行提纯,再用高压坩埚下降法在1530℃、氩气保护气氛下生长出高质量ZnSe单晶体.研究了提纯过程温度的选择以及氧含量和压力对于晶体生长的影响.对生长出的单晶体进行均匀性测试表明ZnSe单晶完整性和均匀性良好.对ZnSe单晶进行光学性能测试分析表明ZnSe单晶的折射率高,吸收系数低,红外透过率大于70%.","authors":[{"authorName":"卢利平","id":"e12c84a7-e194-472c-a46a-fb4a540e10ae","originalAuthorName":"卢利平"},{"authorName":"刘景和","id":"f3bf3903-0751-4cae-9c71-d8ce1dc09d72","originalAuthorName":"刘景和"},{"authorName":"李建立","id":"900acdbd-e2c2-4520-bbf4-6e132ee11499","originalAuthorName":"李建立"},{"authorName":"万玉春","id":"2fdaccc7-5adf-4271-bad1-a7f4a3b612e4","originalAuthorName":"万玉春"},{"authorName":"张亮","id":"60cb503d-d7f5-492f-8530-3dbd5cd2c15a","originalAuthorName":"张亮"},{"authorName":"曾繁明","id":"7333749e-43d1-4006-998b-a762a0cb268e","originalAuthorName":"曾繁明"}],"doi":"10.3969/j.issn.1000-985X.2005.02.005","fpage":"215","id":"2b7f0c09-7353-4829-89fc-340d7ee62049","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"6a04db36-5647-4c97-a397-bb4e086ba609","keyword":"ZnSe单晶","originalKeyword":"ZnSe单晶"},{"id":"61a415e3-87a1-4ae6-b76c-e43f4c7e2cbc","keyword":"物理气相输运法","originalKeyword":"物理气相输运法"},{"id":"321af36a-5aaf-4fe8-9048-d7420332b85d","keyword":"高压坩埚下降法","originalKeyword":"高压坩埚下降法"},{"id":"1da4e807-069a-41b3-b758-48c070a7f1cc","keyword":"透过率","originalKeyword":"透过率"}],"language":"zh","publisherId":"rgjtxb98200502005","title":"ZnSe单晶生长及性能研究","volume":"34","year":"2005"},{"abstractinfo":"采用温度梯度法(TGT)生长了直径为32 mm大尺寸ZnSe晶体.对生长出的ZnSe单晶进行了光学性能分析.采用磁控溅射方法在ZnSe晶体上镀铬膜,通过热扩散方法成功制备出中红外Cr∶ ZnSe激光晶体,并研究了Cr∶ZnSe晶体的光谱性能.吸收光谱测试观察到了Cr2+(3d4)取代四面体配位Zn2的5T2→5E能级的跃迁在1800nm的吸收带.77 K低温的光致发光光谱表明Cr∶ ZnSe晶体具有中心波长位于2.2 μm的宽谱带发射特征.","authors":[{"authorName":"张浩","id":"b4409043-fa1d-42a1-a780-026eb96ca52d","originalAuthorName":"张浩"},{"authorName":"李琳","id":"bb483c3e-b84f-465d-9fa5-c06bfc4e466c","originalAuthorName":"李琳"},{"authorName":"宋平新","id":"c3312397-19a8-4db8-8543-414ed815f2df","originalAuthorName":"宋平新"},{"authorName":"张迎九","id":"2988ab16-2440-4684-87f8-b25d56b4bfbd","originalAuthorName":"张迎九"},{"authorName":"冷雨欣","id":"7be2d1cd-14b8-4316-b0fa-50b0d8b2d624","originalAuthorName":"冷雨欣"},{"authorName":"许毅","id":"c698c3d8-b1cc-437b-9a0d-6af2298faa56","originalAuthorName":"许毅"},{"authorName":"董永军","id":"db0d7583-d80e-4e2a-aa8e-5883b4b5ffc9","originalAuthorName":"董永军"}],"doi":"","fpage":"848","id":"d7a4aa62-9da9-41ad-9ce3-8cea0f288bbc","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"8f0c285e-4677-412a-9751-6e75d11feaf5","keyword":"ZnSe","originalKeyword":"ZnSe"},{"id":"2db4cda3-7a7e-4324-87fc-9de677c273e4","keyword":"Cr∶ZnSe","originalKeyword":"Cr∶ZnSe"},{"id":"219023a4-ee37-4c3d-b44d-f13b9e06e6c3","keyword":"温度梯度法(TGT)","originalKeyword":"温度梯度法(TGT)"},{"id":"ca8da4d1-812b-4731-8e9a-d741ccd7bdfa","keyword":"中红外","originalKeyword":"中红外"}],"language":"zh","publisherId":"rgjtxb98201104007","title":"ZnSe和Cr∶ ZnSe单晶的温梯法制备及光学性能研究","volume":"40","year":"2011"},{"abstractinfo":"采用单质Se为原料(Zn-Se-H2-Ar体系)来生长CVD ZnSe,初步分析了这种工艺的机理,并详细分析了各种工艺参数对生长ZnSe的影响.这些工艺参数包括沉积腔的温度和压力,Zn坩埚和Se坩埚的温度,各路载流气体的流量.对这些工艺参数进行调整和精确控制,并控制好Zn蒸气和Se蒸气气嘴处的ZnSe生长形态,生长出了质量良好的ZnSe多晶体,透过率超过70%.","authors":[{"authorName":"王向阳","id":"fa3f1057-91b3-43a5-a46d-4f901c10ec68","originalAuthorName":"王向阳"},{"authorName":"方珍意","id":"487e9531-8b66-4fa8-baec-feb30bf5892c","originalAuthorName":"方珍意"},{"authorName":"蔡以超","id":"32089e13-4001-426d-bfd1-ff8e05b920a2","originalAuthorName":"蔡以超"},{"authorName":"张力强","id":"5ddb100f-bd3f-487f-a0a9-1f54272f2e52","originalAuthorName":"张力强"},{"authorName":"肖红涛","id":"8a6a3460-a781-44b5-bb9c-c746790fdf31","originalAuthorName":"肖红涛"}],"doi":"10.3969/j.issn.1000-985X.2004.02.025","fpage":"235","id":"126d1f1d-05b3-4165-aab1-d123481f28c4","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"4ebca21c-592b-4bd0-8895-4646e26bd1b8","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"},{"id":"49477313-7942-4fa1-96f7-2b3b99d86bbf","keyword":"硒化锌","originalKeyword":"硒化锌"},{"id":"5333599b-bae2-4ff3-b595-37f8201ce074","keyword":"工艺分析","originalKeyword":"工艺分析"}],"language":"zh","publisherId":"rgjtxb98200402025","title":"CVD法生长ZnSe的工艺分析","volume":"33","year":"2004"},{"abstractinfo":"A new method is given to increase doping concentration of p-type ZnSe up to 1×1018 cm-3 through adding a little Te. This method gets over the difficulty of the high doping concentration of p-type ZnSe for many years. The external quantum efficiency (QE) of ZnSe p-n junction solar cell has been measured, and ZnSe is a good material of the top cell in the tandem solar cells. The solar cells made from ZnSe/GaAs/Ge can cover 94% of the total solar spectrum under AM (air mass) 1.5, and their theoretical efficiency is 56%.","authors":[{"authorName":"Aikun WANG","id":"0a4fffa4-6974-48fb-8ab8-8a3e929d10b0","originalAuthorName":"Aikun WANG"},{"authorName":" Guochang LI","id":"bf579348-d31b-463d-9329-70c8cff9c371","originalAuthorName":" Guochang LI"},{"authorName":" Guoxiang ZHOU","id":"c3a76f66-f55c-460a-a4bc-b9b59c29a157","originalAuthorName":" Guoxiang ZHOU"},{"authorName":" Jertrude F.Neumark","id":"2b2a5bbe-24d9-44a2-969c-c3d99e7860cb","originalAuthorName":" Jertrude F.Neumark"}],"categoryName":"|","doi":"","fpage":"631","id":"01fbe42b-cb6d-4d1e-8c47-c67bef86705b","issue":"5","journal":{"abbrevTitle":"CLKXJSY","coverImgSrc":"journal/img/cover/JMST.jpg","id":"11","issnPpub":"1005-0302 ","publisherId":"CLKXJSY","title":"材料科学技术(英文)"},"keywords":[{"id":"516e5d6e-3a64-4ffe-8e6d-a6735e48e594","keyword":"ZnSe top cell","originalKeyword":"ZnSe top cell"},{"id":"7c885d30-f68c-4d41-b6ad-ce76d388a0a4","keyword":"null","originalKeyword":"null"},{"id":"5edb490f-2cfe-4818-857f-465845c54949","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1005-0302_2004_5_4","title":"ZnSe/GaAs/Ge Triple Junction Solar Cell and Its Structure Design","volume":"20","year":"2004"},{"abstractinfo":"采用化学气相输运法(CVT)在适合的温度和I2含量的条件下,生长出了25mm×3mm的ZnSe单晶,位错密度为6.5×103个/cm2.对ZnSe单晶进行光学性能分析,在10.6μm处的透过率超过70%,在10.6μm处的吸收系数为7.72×10-4/cm.","authors":[{"authorName":"张旭","id":"2c9d231a-a38f-4738-984c-42261b699b93","originalAuthorName":"张旭"},{"authorName":"李卫","id":"ba53714c-8175-4558-81ef-f4a871e81fde","originalAuthorName":"李卫"},{"authorName":"张力强","id":"a018ca9b-4b20-49b1-bcfe-95fbaccc6483","originalAuthorName":"张力强"},{"authorName":"丁进","id":"c2d731da-268b-42d0-ae87-fc4b698e2246","originalAuthorName":"丁进"},{"authorName":"王坤","id":"9c5eb62b-8077-4f20-82bc-6589e31acc1b","originalAuthorName":"王坤"}],"doi":"10.3969/j.issn.1000-985X.2006.02.041","fpage":"385","id":"e6dcf754-1894-4f75-a4b8-2ef506ba6589","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"e9d0c262-ffc0-4d64-a718-e7c85aade3c0","keyword":"ZnSe单晶","originalKeyword":"ZnSe单晶"},{"id":"495de94d-171f-4a22-aa3f-7d8301111431","keyword":"化学气相输运","originalKeyword":"化学气相输运"},{"id":"123f36a1-e5b9-47bc-b577-a3ba81cb5494","keyword":"位错密度","originalKeyword":"位错密度"}],"language":"zh","publisherId":"rgjtxb98200602041","title":"低位错ZnSe单晶的生长","volume":"35","year":"2006"},{"abstractinfo":"以乙酸锌为锌源,Na2SeO3·5H2O或Se粉为硒源,采用溶剂热法在乙醇胺(EA)溶剂中—步合成晶型和形貌可控的闪锌矿和纤锌矿结构的ZnSe纳米材料.利用X射线衍射(XRD)、能量色散X射线谱(EDS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对产物的晶型、成分和形貌进行了表征.结果表明,Se源的选取直接决定了ZnSe纳米材料的晶型和形貌:以Na2SeO3·5H2O为源,产物为立方相闪锌矿结构的ZnSe纳米颗粒,直径30 nm左右;以Se粉为源,产物为六方相纤锌矿结构的ZnSe纳米片,厚度约50 nm.进一步的研究表明,具有合适配位能力的乙醇胺溶剂和Se源对ZnSe纳米结构的合成起重要作用.通过紫外-可见光谱(UV-Vis)和室温光致发光光谱(PL)表征了产物的光学性质.","authors":[{"authorName":"吴荣","id":"9edaec4c-c438-4f3b-ad52-0c44c906c121","originalAuthorName":"吴荣"},{"authorName":"姜楠楠","id":"3a30e17b-3549-470d-99e8-f6525b2bcd56","originalAuthorName":"姜楠楠"},{"authorName":"李锦","id":"c4ac4b80-a352-41d5-9bd9-3fd442777f3f","originalAuthorName":"李锦"},{"authorName":"简基康","id":"b511df48-46d2-4bd5-9578-7a15cf600dfa","originalAuthorName":"简基康"},{"authorName":"常爱民","id":"35b0cf3b-0bf9-4010-bc54-737bae36bdeb","originalAuthorName":"常爱民"}],"doi":"10.3724/SP.J.1077.2013.12401","fpage":"579","id":"2f7e229e-e1c0-48fa-b131-a4feec9a4160","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"6eea8592-29f9-40e2-816e-70ad43728e58","keyword":"溶剂热","originalKeyword":"溶剂热"},{"id":"9c290028-c07a-4274-b325-013be0c94f8d","keyword":"ZnSe","originalKeyword":"ZnSe"},{"id":"7d764d35-f515-4f03-a763-d771e131506b","keyword":"闪锌矿","originalKeyword":"闪锌矿"},{"id":"9441dfcf-e8dd-4281-bf96-a707bd8d9a05","keyword":"纤锌矿","originalKeyword":"纤锌矿"}],"language":"zh","publisherId":"wjclxb201306002","title":"溶剂热法合成ZnSe纳米材料","volume":"28","year":"2013"},{"abstractinfo":"ZnSe是一种优秀的红外窗口材料,得到广泛的关注.在本文叙述了ZnSe红外窗口材料的光学特性和力学特性,以及详细地描述ZnSe体单晶熔体法、气相法、溶液法和固相再结晶制备技术及其影响因素.","authors":[{"authorName":"么艳平","id":"6b51eb3c-0b65-462a-8f6a-436f92bccf61","originalAuthorName":"么艳平"},{"authorName":"刘景和","id":"130dbb3e-3101-4312-85a7-a058cbb7eb8e","originalAuthorName":"刘景和"}],"doi":"10.3969/j.issn.1000-985X.2006.01.042","fpage":"183","id":"5819ab9c-bb84-4084-bcfc-87041271d006","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"c1739ea2-bf74-48b3-853f-468e31f19bd1","keyword":"红外窗口材料","originalKeyword":"红外窗口材料"},{"id":"e009d926-b2ca-4201-88bf-e4b9f62f22dd","keyword":"ZnSe单晶","originalKeyword":"ZnSe单晶"},{"id":"6aded15a-909d-443f-a4c3-4381915b0358","keyword":"性能","originalKeyword":"性能"},{"id":"415600ae-e71d-4e95-96a8-057a7790c697","keyword":"生长技术","originalKeyword":"生长技术"}],"language":"zh","publisherId":"rgjtxb98200601042","title":"ZnSe红外窗口材料的性能及其制备","volume":"35","year":"2006"},{"abstractinfo":"A chemical-assisted element direct-reaction method is developed to synthesize ZnSe compound semiconductor material at a relatively low temperature (~1000 °C). ZnSe polycrystal was obtained in the closed-tube systems with Zn-Se, Zn-Se-Zn(NH3)2Cl2, Zn-Se-NH4Cl and Zn-Se-ZnCl2. The as-synthesized samples were tested by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and analyzed by thermodynamic numerical\nmethod. The results demonstrate that the synthesis efficiency is higher than 99.96% for Zn-Se-ZnCl2 system at around 1000 °C for 3 weeks. It also exhibits that not only temperature, but also low apparent ratio of volume and surface area of the source materials and higher ZnCl2 content are required to achieve high synthesis efficiency. A SeCl transporting reaction synthesis process is proposed based on the thermodynamic analysis.","authors":[{"authorName":"Changyou Liu","id":"f3aa338c-b510-42a7-a759-e7edebd61eae","originalAuthorName":"Changyou Liu"}],"categoryName":"|","doi":"","fpage":"373","id":"e9bdd2d9-35e6-4e0f-94fe-8cf7a12cbb02","issue":"4","journal":{"abbrevTitle":"CLKXJSY","coverImgSrc":"journal/img/cover/JMST.jpg","id":"11","issnPpub":"1005-0302 ","publisherId":"CLKXJSY","title":"材料科学技术(英文)"},"keywords":[{"id":"3f54cbd5-2d5d-48f5-a706-3ee2fc1756c5","keyword":"Crystallites","originalKeyword":"Crystallites"}],"language":"en","publisherId":"1005-0302_2012_4_5","title":"ZnCl2-assisted Synthesis of ZnSe Polycrystal","volume":"28","year":"2012"}],"totalpage":250,"totalrecord":2496}