欢迎登录材料期刊网

材料期刊网

高级检索

提出一种低碳微合金MnCuNiCrMo钢,测试了其过冷奥氏体连续冷却相变(CCT)曲线,分别研究未再结晶区变形量、冷却速率对其相变行为的影响.使用厚板坯连铸(CC)—钢板控轧控冷(TMCP)工艺流程,在5m宽厚板工业生产线上成功开发出60 mm特厚Q500qENH桥梁钢板.开发钢板的显微组织为细密粒状贝氏体(GB)+针状铁素体(AF)+多边形铁素体(PF);横向室温屈服强度大于560MPa,抗拉强度大于660MPa,伸长率大于20%;Z向面缩率大于76%;-40℃下纵向Charpy冲击吸收能量(KV2)大于170J;零塑性温度为-85℃.

参考文献

[1] 姚昌荣,李亚东,强士中.美国桥梁高性能钢的发展与应用[J].世界桥梁,2005(01):57-61.
[2] KAWABATA Fumimaru;MATSUI Kazuyuki;OBINATA Tadashi;KOMORI Tsutomu;TAKEMURA Masahiro;K.UBO Takahiro .Steel Plates for Bridge Use and Their Application Technologies[J].JFE technical report,2004(2):85-90.
[3] Miki C;Homma K;Tominaga T .High Strength and High Performance Steels and Their Use in Bridge Structures[J].Journal of Constructional Steel Research,2002,58(01):3.
[4] Caroline R. Kayser;James A. Swanson;Daniel G. Linzell .Characterization of Material Properties of HPS-485W (70 W) TMCP for Bridge Girder Applications[J].Journal of Bridge Engineering,2006(1):99-108.
[5] Wilson A D;Gross J H;Stout R D.Development of Improved HPS-100W Steel for Bridge Applications[A].,2002:32.
[6] Bai D Q;Nelson T;Bodnar R et al.Development of High-Performance Steels for Bridge Applications at SSAB North A merican[J].Iron Steel Technology,2009,6(10):65.
[7] 翁宇庆,康永林.中国轧钢近年来的技术进步[J].钢铁,2010(09):1-13,27.
[8] 吴保平,黄运华,张跃,蔡珍.轧制工艺对高性能桥梁钢组织与性能的影响[J].材料热处理学报,2011(08):113-117.
[9] 陈俊,唐帅,周砚磊,刘振宇,王国栋,杨颖,陈军平.低碳Q690qENH高强桥梁钢的动态再结晶行为[J].材料研究学报,2012(02):199-205.
[10] 高新亮,付贵勤,邓志银,林光铭,朱苗勇.含Cu桥梁耐候钢的相变规律[J].过程工程学报,2010(05):998-1003.
[11] 刘东升,李庆亮.热轧屈服强度550MPa高强度钢板组织性能[J].钢铁,2011(04):53-58.
[12] NEREA ISASTI;DENIS JORGE-BADIOLA;PELLO URANGA .Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2013(8):3552-3563.
[13] 刘东升,程丙贵,罗咪.F460高强韧厚船板焊接热影响区的组织和冲击断裂行为[J].金属学报,2011(10):1233-1240.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%