欢迎登录材料期刊网

材料期刊网

高级检索

采用电化学阻抗谱(EIS)研究B95铝合金在10 mmol/L CeCl3溶液中转化膜的形成过程,在建立稀土转化膜成膜过程三阶段机理基础上,采用电化学阻抗谱(EIS)技术研究溶液中氧含量、H2O2、pH 值等各种条件变化对转化膜形成过程的影响。结果表明:O2参与的反应不是Ce转化膜形成速度的决定步骤,添加H2O2加快Ce转化膜形成速度,特别是形成过程的第一阶段;微阴极区氧主要按二电子途径还原,使局部 pH 上升,当 pH 达到或超过8.05时,Ce(Ⅲ)水合氢氧化物/氧化物开始沉积;Ce(Ⅲ)转化膜达到稳定平衡阶段,部分Ce(OH)3会被氧还原的中间产物H2O2氧化成CeO2;在中性或弱酸性溶液中,提高溶液的pH值对最终成膜有利。

The electrochemical impedance spectroscope (EIS) was used to study the conversion coating forming process of B95 aluminum alloy in 10 mmol/L CeCl3 solution. The formation process of rare earth (RE) conversion coating can be divided into three stages. Based on the three stages formation mechanism of the rare earth conversion coatings, the influences of O2 concentration, oxidant, pH etc on the formation process of conversion film were investigated. The result shows that the reaction caused by the O2 participation is not determinate step of the Ce conversion coating formation, the addition of H2O2 speeds up the formation of Ce conversion coating, especially in the first stage. The two electric ways of cathodic reaction are formed by the conversion coating on B95 aluminum alloy in CeCl3 solution, which reasonably explains the local pH rise in micro cathode area, Ce(Ⅲ) hydrous hydroxide/oxide begins to deposit when the pH reaches or exceeds 8.05. Part Ce(OH)3 can be oxidized into CeO2 by the intermediate products of H2O2 when Ce(Ⅲ) conversion coating achieves stable equilibrium. In neutral or subacidity solution, improving the pH of solution will beneficial to the final formation of the coating.

参考文献

[1] HINTON B R W;ARNOTT D R;RYAN N E .Cerium conversion coating for the corrosion protection of aluminum[J].Materials Forum,1986,9(03):162-173.
[2] ARNOTT D R .Cationic film forming inhibitors for the corrosion protection of AA7055 aluminum alloy in chloride solutions[J].Materials Performance,1987,26(08):42-47.
[3] ARNOTT D R .Cationic film forming inhibitors for the protection of AA7075 aluminum alloy against corrosion in aqueous chloride solution[J].CORROSION,1989,45(01):12-19.
[4] DAVENPORT A J;ISAACS H S;KENDIG M W .XANES investigation of the role of cerium compounds as corrosion inhibitors for aluminum[J].Corrosion Science,1991,32(04):635-663.
[5] HUGHES A E;TAYLOR R J;HINTON B R;WILSON L .XPS and SEM characterization of hydrated cerium oxide conversion coatings[J].Surface and Interface Analysis,1995,23(7/8):540-550.
[6] Aldykiewicz AJ.;Isaacs HS.;Davenport AJ. .STUDIES OF THE FORMATION OF CERIUM-RICH PROTECTIVE FILMS USING X-RAY ABSORPTION NEAR-EDGE SPECTROSCOPY AND ROTATING DISK ELECTRODE METHODS[J].Journal of the Electrochemical Society,1996(1):147-154.
[7] HUGHES A E;TURNEY T W;NELSON K J H .Process and solution for providing a conversion coating on a metal surface[P].US Patent:US6206982,2001-03-27.
[8] 邵敏华,黄若双,付燕,胡融刚,林昌健.Al合金表面Ce转化膜成膜机理研究[J].物理化学学报,2002(09):791-795.
[9] 邵敏华,付燕,胡融刚,林昌健.Al合金铈盐转化膜缓蚀机理研究[J].电化学,2002(01):15-21.
[10] 顾宝珊,刘建华.铝合金在铈盐溶液中成膜过程的电化学阻抗谱研究[J].中国稀土学报,2007(02):210-216.
[11] 顾宝珊,杨培燕,宫丽.电化学阻抗谱技术研究Ce(Ⅲ)转化膜在3.5%NaCl溶液中的腐蚀行为[J].中国有色金属学报,2013(06):1640-1647.
[12] ROCCA E;JUERS C;STEINMETZ J .Corrosion behaviour of chemical conversion treatments on as-cast Mg-Al alloys:Electrochemical and non-electrochemical methods[J].Corrosion Science,2010,52:2172-2178.
[13] 顾宝珊,刘建华.过氧化氢对铈盐转化膜形成过程影响的电化学阻抗谱研究[J].腐蚀科学与防护技术,2011(02):143-146.
[14] 李荻.电化学原理[M].北京:北京航空航天大学出版社,1999:394-398.
[15] 查全性.电极过程动力学导论[M].北京:科学出版社,2002:258-262.
[16] Gu Baoshan;Liu Jianhua .Corrosion Inhibition Mechanism of Rare Earth Metal on LC4 Al Alloy with Spilt Cell Technique[J].Journal of Rare Earths,2006(1):89-96.
[17] ARNOTT D R .Auger and XPS studies of cerium corrosion inhibition on 7075 aluminum alloy[J].Applications of Surface Science,1985,22/23:236-251.
[18] Scholes FH;Soste C;Hughes AE;Hardin SG;Curtis PR .The role of hydrogen peroxide in the deposition of cerium-based conversion coatings[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2006(4):1770-1780.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%