欢迎登录材料期刊网

材料期刊网

高级检索

将羧基化多壁碳纳米管(MWCNTs)添加到TDE85环氧树脂中,然后与碳纤维非褶皱无纺布(C-NCF)复合,制备成[0°/90°/+45°/-45°]。层合板。采用三点弯曲、短梁剪切和单边切口弯曲测试方法以及动态力学性能分析方法,研究了不同含量的MWCNTs对层合板弯曲性能、层间剪切强度(ILSS)、Ⅱ型层间断裂韧性(GⅡc),以及玻璃态转变温度(L)的影响。并采用SEM对Ⅱ型试样的断面进行分析。结果表明,MWCNTs的加入显著提高了NCF层合板的力学性能。与空白试样相比,当MWCNTs在树脂中的质量分数为2.0%时,弯曲强度和模量分别提高了约26%和6%;当MWCNTs的质量分数为0.5%时,ILSS、GⅡc、Tg分别提高约14%、27%和14%。

MWCNTs were functionalized with carboxyl and then mixed with epoxy TDE85. The obtained mixtures were used to impregnate the NCF laminates, stacking with a sequence of [-0°/90°/+ 45°/- 45°]s. Flexural properties, interlaminar shear strength (ILSS), and mode Ⅱ interlaminar fracture toughness (Guc), as well as the glass transition temperature (Tg) of the resulting laminates were characterized using three-point bending, short beam shear, end notch flexure (ENF) specimens, and a dynamic mechanical analysis, respectively. SEM was used to analyze the fracture characteristics of the tested ENF specimens. The results show that there are reinforcing effects of the MWCNTs on the mechanical properties when the mass fraction of the MWCNTs varies from 0 to 2.00%. The flexural strength and modulus are improved by 26% and 6%, respectively, with 2.00/60 mass fraction of MWCNTs. The ILSS, Gnc and Tg are enhanced by 14%, 27% and 14%, respectively when 0.5% mass fraction of MWCNTs is used.

参考文献

[1] 杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12.
[2] Drapier S, Michael R, Wisnom A. A finite element investigation of the interlaminar shear behavior of non-crimp- fabric- based composites [J]. Composites Science and Technology, 1999, 59(16): 2351-2362.
[3] Du G W, Ko F. Analysis of multiaxial warp knitted preforms for composite reinforcement [J]. Composites Science and Technology, 1996, 56(3): 253-260.
[4] Horsting K. Advanced properties of warp knitted multiaxial layer fabric for a rationalized composite production [C]// 41^st International SAMPE Symposium. United States: SAMPE, Covina, CA, 1996, 41(1): 188-195
[5] Lomov S V, Verpoest I, Barburski M, et al. Carbon composites based on multiaxial multiply stitched performs: Part 2- KDS-F characterisation of the deformability of the preforms at low loads [J]. Composites: Part A, 2003, 34(4) : 359-370.
[6] Hu J, Jiang Y. Modeling formability of multiaxial warp knitted fabrics on a hemisphere [J]. Composites: Part A, 2002, 33(5): 725-734.
[7] Lomov S V, Belov E B, Bischoff T, et al. Carbon composites based on multiply stitched preforms: Part 1--Geometry of the perform [J]. Composites: Part A, 2003, 34(12): 1171-1183.
[8] Kong H, Mouritz A P, Paton R. Tensile extension properties and deformation mechanisms of multiaxial non- crimp fabrics [J]. Composite Structures, 2004, 66(1/2/3/4): 249-259.
[9] Mattsson D, Joffe R, Varna J. Methodology for characterization of internal structure parameters governing performance in NCF composites [J]. Composites: Part B, 2007, 38(1): 44-57.
[10] Beier U, Fischer F, Jan K W, et al. Mechanical performance of carbon fibre- reinforced composites based on stitched performs [J]. Composites: Part A, 2007, 38(6): 1655-1663.
[11] Tugrul S A, Metin T, Karl S. Mode I and mode U fracture toughness of E - glass non - crimp fabric/carbon nanotube (CNT) modified polymer based composites [J].Engineering Fracture Mechanics, 2008, 75(18): 5151-5162.
[12] Daniel C D, Justin W W, et al. A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes [J]. Composites Science and Technology, 2011, 71(8): 1089-1097.
[13] Zhu J, Imam A, Crane R, et al. Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength [ J]. Composites Science and Technology, 2007, 67(5): 1509-1517.
[14] Carlson L A, Donald F A, Pipes R. Experimental characterization of advanced composite materials [M]. 3rd ed. USA: CRC Press, 2002.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%