欢迎登录材料期刊网

材料期刊网

高级检索

简述了软化学制备技术的定义和特点,重点综述了几种重要的软化学制备技术包括溶胶-凝胶法、Pechinic法、共沉淀法、水热法、聚合物热分解法等在LiMn2O4粉体制备中的进展,对上述工艺技术的特点进行了评述,对LiMn2O4粉体的软化学制备技术发展趋势进行了展望.

参考文献

[1] Hong Y S;Park H B;Yi J E et al.Characterization of spinel lithium manganite prepared by citrate sol-gel method[J].Bulletin of the Korean Chemical Society,1997,18(11):1153.
[2] Luo J Y;Wang Y G;Xiong H M et al.Ordered mesoporous spinel LiMn2O4 by soft-chemieal process as a cathode material for lithium-ion batteries[J].Chemistry of Materials,2007,19:4791.
[3] Luo J Y;Li X L;Xia Y Y et al.Synthesis of highly crystalline spinel 2O4 by a soft chemieal route and its electrochemical performance[J].Electrochimica Acta,2007,52:4525.
[4] Suryakal K;Marikkannu K R;Paruthimal K G et al.A novel approach to synthesize lithium ion battery spinel eath ode materials[J].Ionics,2007,13:41.
[5] Bao S J;Liang Y Y;Zhou W J et al.Enhancement of the electrochemical properties of 2O4 through Al3+ and FCo-substitution[J].Journal of Colloid and Interface Science,2005,291:433.
[6] 王要武,蔡砚,何向明,应皆荣.尖晶石LiMn2O4作为锂离子正极材料的研究与开发[J].无机材料学报,2004(01):1-8.
[7] Yi T F;Hu X G;Gao K .Synthesis and physicochemical properties of LiA10.05 Mn1.95O4 cathode material by the ultrasonic-assisted sol-gel method[J].Journal of Power Sources,2006,162:636.
[8] Vivekanandhan S;Venkateswarlu M;Satyanarayana N .Novel urea assisted polymeric citrate route for the synthesis of nanocrystalline spinel LiMn2O4 powder[J].Journal of Alloys and Compounds,2007,441(1-2):284.
[9] Raja M W;Mahanty S;Paromita Ghosh et al.Alanine-assisted low-temperature combustion synthesis of nanocrystalline spinel LiMn2O4 powder[J].Materials Research Bulletin,2007,42:1499.
[10] Liu X H;Wang J Q;Zhang J Y et al.Fabrication and characterization of Zr and Co co-doped LiMn2O4 nanowires using sol-gel-AAO template process[J].Journal of Materials Science:Materials in Electronics,2006,16(01):865.
[11] Liu D Q;Liu X Q;He Z Z et al.Surface modification by ZnO coating for improving the elevated temperature performance of LiMn2O4[J].Journal of Alloys and Compounds,2007,436:387.
[12] Thiruankaran R;Kim K T;Kang Y M et al.Malonic acid assisted sol-gel synthesis and characterization of chromium doped LiMn2O4 spinel[J].Ionics,2003,9(3-4):266.
[13] Sang H P;Ki S P;Sung S M et al.Sythesis and electrochemical characterization of Li1.02Mg0.1Mn1.9O3.99O00.01 using sol-gel method[J].Journal of Power Sources,2001,92:244.
[14] Hon Y M;Lin S P;Fung K Z et al.Sythesis and characterization of nano-LiMn2O4 powder by tartaric acid gel process[J].Journal of the European Ceramic Society,2002,22:653.
[15] Thirunakaran R;Kim K T;Kang Y M et al.Cra3+ modified LiMn2O4 spinel intercalation cathodes through oxalic acid assisted sol-gel method for lithium rechargeable batteries[J].Materials Research Bulletin,2005,40:177.
[16] Zhang Y L;Shin H C;Dong J et al.Nanostructured LiMr2O4 prepared by glycine-nitrate process for lithium-ion batteries[J].Solid State Ionics,2004,171:25.
[17] Muhammad J I;Sabia Z .Sythesis and characterization of nanosized lithium manganate and its derivatives[J].Journal of Power Sources,2007,165:393.
[18] Dziembaj R.;Molenda M.;Majda D.;Walas S. .Synthesis, thermal and electrical properties of Li1+delta Mn2-delta O4 prepared by a sol-gel method[J].Solid state ionics,2003(1/4):81-87.
[19] Molenda M;Dziembaj R;Majda D;Dudek M .Synthesis and characterisation of sulphided lithium manganese spinels LiMn2O4-S-y(y) prepared by sol-gel method[J].Solid state ionics,2005(19/22):1705-1709.
[20] Wu S H;Su H J .Electrochemical characteristics of partially cobalt-substituted LiMn2O4-y CoyO4 spinels synthesized by pechini process[J].Materials Chemistry and Physics,2002,78:189.
[21] Vivekanandhan S;Venkateswarlu M;Satyanarayana N et al.Effect of calcining temperature on the electrochemical performance of nanocrystalline LiMn2O4 powder prepared by polyethylene glycol (PEG-400) assisted pechini process[J].Materials Letters,2006,60:3212.
[22] 康慨,戴受惠,万玉华.锂离子电池LiMn2O4薄膜电极的制备研究进展[J].化学研究与应用,2000(06):580-586,596.
[23] Yi T F;Hu X G .Preparation and characterization of submicro LiNio.5-xMn1.5+xO4 for 5V cathode materials synthesized by an ultrasonic-assisted co-precipitation method[J].Journal of Power Sources,2007,167:185.
[24] Lee K S;Myung ST;Bang H J et al.Co-precipitation synthesis of spherical Li1.05 M0.05 Mn1.9 O4 (M=Ni,Mg,Al) spinel and its application for lithium secondary battery cathod[J].Electrochimica Acta,2007,52:5201.
[25] Sun Y K;Sung W O;Chong S Y et al.Effect of surfur and nickel doping on morphology and electrochemical performance of LiNi0.5 Mn1.5 O4-X SX spinel material in 3-V region[J].Journal of Power Sources,2006,161:19.
[26] Sun B;Shen G P;Hu Y L et al.High-rate capability of spinel LiNi0.5 Mn1.95 O4 cathode for Li-ion batteries prepared via coprecipitated precursor[J].Transactions of Nonferrous Metals Society of China,2007,17:937.
[27] Liang YY;Bao SJ;Li HL .A series of spinel phase cathode materials prepared by a simple hydrothermal process for rechargeable lithium batteries[J].International Journal of Quantum Chemistry,2006(7):2133-2140.
[28] Wu H M;Tu J P;Yuan Y F et al.One-step synthesis LiMn2O4 cathode by a hydrothermal method[J].Journal of Power Sources,2006,161:1260.
[29] Li X L;Xiang R M;Su T et al.Sythesis and electrochemical properties of nanostructured LiMn2O4 for lithium-ion batteries[J].Materials Letters,2007,61(17):3597.
[30] Jiang C H;Dou S X;Liu H K et al.Sythesis of spinel LiMn2O4 nannoparticles trough one-step hydrothermal reaction[J].Journal of Power Sources,2007,172:410.
[31] Hwang K T;Um W S;Lee H S et al.Powder synthesis and electrochemical properties of LiMn2O4prepared by an emulsion-drying method[J].Journal of Power Sources,1998,74:169.
[32] Myung S T;Chung H T;Shinichi Komaba et al.Capacity fading of LiMn2O4 electrode synthesized by the emulsion drying method[J].Journal of Power Sources,2000,90:103.
[33] Subramania A;Angayarkanni N;Vasudevan T .Polyaspartic-acid-pyrolysis route for the synthesis of nanocrystalline LiCo0.15Mn1.85O4 powder for Li-ion batteries[J].Ionics,2007,13:61.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%