欢迎登录材料期刊网

材料期刊网

高级检索

采用超音速火焰喷涂工艺分别制备了WC_12Co、Cr3C2—25NiCr碳化物金属陶瓷涂层,测定了涂层孔隙率、显微硬度及磨粒磨损过程中涂层的质量损失,探讨了涂层磨损质量损失与涂层种类及结构的关系,利用扫描电镜对涂层磨损表面形貌进行了观察,分析了涂层的磨粒磨损失效机制。结果表明:制备的Cr3C2—25NiCr、WC-12Co涂层组织致密,孔隙率分别为1.36%和2.769/6,涂层与基体结合良好,显微硬度分别为822HV和1132HV,涂层磨损质量损失与磨损距离呈线性关系,Cr3C2—25NiCr涂层的磨损质量损失约为WC-12Co涂层的3倍;犁沟切削是涂层磨粒磨损初期的主要特征,而碳化物颗粒的断裂与剥落则是涂层磨损后期失效的主要原因。

WC-12Co and CraCz-25NiCr carbide cermet coatings were prepared by high velocity oxy-fuel (HVOF) technique. Coating porosity, microhardness and wear mass loss of coating material in the abrasive wear test were studied. The relationship between the wear mass loss and coating type, coating microstructure was analyzed and the abrasive wear mechanism of HVOF sprayed carbide cermet coatings was discussed through observation of the worn morphology of coatings by SEM. The results indicate that CraC2-25NiCr and WC-12Co coatings had dense microstructure and good bonding with the matrix, and the porosities were 1.36~ and 2. 76~, the microhardness value of two coatings was 822 HV and 1 132 HV, respectively. The accumulative wear mass loss and wear distance had a linear relationship and the wear mass loss of Cr3C4-25NiCr was more than three times than that of WC-12Co coating. The cutting or gouging was the main feature of the coatings in the early stage of wear process, however, the cracking and spalling of carbide particles in the coatings were the main reason for the failure of coatings in the latter process.

参考文献

[1] 李长久.超音速火焰喷涂及涂层性能简介[J].表面工程,1996(04):29.
[2] 赵辉,丁彰雄.超音速火焰喷涂纳米结构WC-12Co涂层耐泥沙冲蚀性能研究[J].热加工工艺,2009(10):84-88.
[3] 纪岗昌,王豫跃,李长久,园家启嗣.HVOF喷涂Cr3C2-NiCr涂层的磨粒磨损性能[J].焊接学报,2000(03):89-92.
[4] 程国东,王引真,秦清彬,王宝阳.超音速火焰喷涂微米碳化物涂层的组织与性能[J].材料保护,2009(01):65-67.
[5] 王群,丁彰雄,陈振华,张世英,蒲玉兴.超音速火焰喷涂微米和纳米结构WC-12Co涂层及其性能[J].机械工程材料,2007(04):17-20,24.
[6] 简中华,马壮,曹素红,王富耻,王全胜.超音速火焰喷涂WC-Co与NiCr-Cr2C3涂层磨损性能研究[J].材料工程,2007(07):21-24.
[7] H. Liao;B. Normand;C. Coddet .Influence of coating microstructure on the abrasive wear resistance of WC/Co cermet coatings[J].Surface & Coatings Technology,2000(2/3):235-242.
[8] D.A.Stewart;P.H.Shipway .Microstructural evolution in thermally sprayed WC-Co coatings: comparison between nanocomposite and conventional starting powders[J].Acta materialia,2000(7):1593-1604.
[9] 李振铎,曾克里,于月光.超细25%NiCr-Cr3C2粉末制备及HVOF涂层性能研究[J].热喷涂技术,2010(1):20-23.
[10] 查柏林,王汉功,苏勋家.超音速喷涂技术在再制造中的应用[J].中国表面工程,2006(z1):174-177.
[11] 伍超群,邓畅光,邓春明,刘敏,周克崧.高速火焰喷涂工艺参数对镍基-碳化钨复合涂层结合强度的影响[J].机械工程材料,2008(08):33-35.
[12] 杨雪,叶福兴,崔崇,王惜宝.HVOF喷涂亚微米级WC-12Co涂层的物相变化与耐磨损性能[J].热喷涂技术,2009(02):53-57.
[13] 王引真,孙永兴,曹文军.超音速火焰喷涂工艺参数对镍基涂层结构和性能的影响[J].机械工程材料,2005(01):10-12,58.
[14] 王群,丁彰雄,陈振华,张世英,柏洪武,李学谦,赵刚.枪管长度和喷涂距离对超音速火焰喷涂制备纳米WC-12Co涂层组织和硬度的影响[J].机械工程材料,2008(09):9-12,16.
[15] 韩志海,徐滨士,王海军,蔡江,周世魁.三种超音速热喷涂工艺制备WC-12Co涂层的组织结构分析[J].中国表面工程,2005(03):23-27.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%