材料导报, 2008, 22(1): 65-69.
直流磁控溅射研究进展
石永敬 1, , 龙思远 2, , 王杰 3, , 潘复生 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过流动显示及静压测量,对不同冲角下、三种叶型弯角的环形压气机直、弯叶栅近壁面区域的流动分离及旋涡结构进行了实验研究.结果表明,近吸力面的气泡分离与转捩取决于叶栅型面静压分布;随叶栅负荷增大,流动分离形式由闭式分离逐渐向开式分离发展,流动分离的对称性逐渐减弱;减少涡系与涡系、涡系与附面层之间的相互作用及掺混可以有效拓宽正弯叶片的应用范围.","authors":[{"authorName":"陈浮","id":"4e33cb62-c05f-4eef-a19b-3c7dcfa157b8","originalAuthorName":"陈浮"},{"authorName":"陈绍文","id":"f074443e-9a0c-42f2-8cc7-547067b838d4","originalAuthorName":"陈绍文"},{"authorName":"郭爽","id":"d4c8e3af-5203-48ea-bf70-2912f913d6c2","originalAuthorName":"郭爽"},{"authorName":"王仲奇","id":"78ee69d5-df33-47fa-8aa9-1c9165ee75f2","originalAuthorName":"王仲奇"}],"doi":"","fpage":"49","id":"9a1c6362-1202-4a2f-86a5-2b508649074c","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"deae94b3-5ae8-4819-9a17-f2b9925679c0","keyword":"环形压气机叶栅","originalKeyword":"环形压气机叶栅"},{"id":"9b98129e-a7d7-4244-a3d9-a461541b7f2e","keyword":"正弯叶片","originalKeyword":"正弯叶片"},{"id":"07badc75-d4ab-47db-819f-a342d5bdf56f","keyword":"高负荷","originalKeyword":"高负荷"},{"id":"6ae642e0-fcfa-48b7-9291-40d3148c2f13","keyword":"实验研究","originalKeyword":"实验研究"}],"language":"zh","publisherId":"gcrwlxb200801015","title":"高负荷压气机叶栅分离与流场结构研究","volume":"29","year":"2008"},{"abstractinfo":"对CDA环形叶栅和6种不同叶展高度安装吸力面翼刀的叶栅三维黏性流场进行了数值模拟,结果表明:各翼刀方案的叶展中部流动状况均较原型叶栅有一定改善,叶栅能量损失系数随翼刀安装位置沿叶展高度的增加先降低后增加.在计算范围内,翼刀安装在叶展高度为20%叶高的方案可使分离线高度显著降低.翼刀涡的形成、发展和变化受翼刀-端壁间气流流动情况和翼刀安装高度的影响,翼刀涡与通道涡的相互作用因翼刀安装高度而异.","authors":[{"authorName":"杨凌","id":"5132d53b-45e9-4c06-bd2b-494d88d1a969","originalAuthorName":"杨凌"},{"authorName":"钟兢军","id":"4c02646b-4a03-40d4-a3f6-f1aee23a07c6","originalAuthorName":"钟兢军"},{"authorName":"严红明","id":"af3caff6-d2e6-4d11-8b08-a868c57b58db","originalAuthorName":"严红明"}],"doi":"","fpage":"938","id":"c79b00eb-5033-46a7-bdee-e313f14c754b","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1c9438a9-99d5-4ba5-be5a-2d1068ea6f3e","keyword":"压气机叶栅","originalKeyword":"压气机叶栅"},{"id":"48c0e5b1-ee52-40e4-9130-3d92bc601efd","keyword":"吸力面翼刀","originalKeyword":"吸力面翼刀"},{"id":"598be4d9-5fae-488a-ac53-9cb0b8236e0f","keyword":"二次流","originalKeyword":"二次流"},{"id":"eb19574d-0231-4d9c-8f58-a858ba3eda79","keyword":"分离线","originalKeyword":"分离线"},{"id":"751cce6a-8965-4689-9c27-c358c88a34b2","keyword":"叶栅损失","originalKeyword":"叶栅损失"}],"language":"zh","publisherId":"gcrwlxb201006010","title":"压气机环形叶栅中应用吸力面翼刀的数值研究","volume":"31","year":"2010"},{"abstractinfo":"本论文利用激波管风洞对内压式冲压叶栅进行了吹风实验.试验叶片的压力分布由在试验件表面的高频压力传感器测得,通道激波则由压敏纸显示.在试验当中,当来流马赫数为2.0左右时,内压式冲压叶栅的静压升达到了4.7左右,其总压恢复系数也达到了0.8左右的预期值.试验结果验证了内压式冲压叶栅工作原理,同时也证明了内压式冲压叶栅的二维叶型设计方法的有效性,为对转冲压压气机的进一步深入研究奠定了一定的基础.","authors":[{"authorName":"肖翔","id":"7e18ba91-b4c8-4e24-a446-0d6450407b62","originalAuthorName":"肖翔"},{"authorName":"刘锡阳","id":"a9465495-4432-4ecc-8979-0732b343606a","originalAuthorName":"刘锡阳"},{"authorName":"赵晓路","id":"2ad92f91-d860-4124-bbb1-03c9fe0b1b27","originalAuthorName":"赵晓路"},{"authorName":"徐建中","id":"5f6f42ec-60ee-44f6-94ee-13e163fecf35","originalAuthorName":"徐建中"}],"doi":"","fpage":"1837","id":"27a3bc0c-73db-4e58-b98c-e8e0f7db1648","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9f4df3c1-5133-43f5-ac95-5e6aeec7c598","keyword":"对转冲压","originalKeyword":"对转冲压"},{"id":"e5227a5e-9888-4129-8f68-3eb1429999e5","keyword":"平面叶栅","originalKeyword":"平面叶栅"},{"id":"b46856b8-010f-452d-8a40-dae3ce1d1ca9","keyword":"实验研究","originalKeyword":"实验研究"}],"language":"zh","publisherId":"gcrwlxb200911010","title":"对转冲压压气机冲压叶栅实验研究","volume":"30","year":"2009"},{"abstractinfo":"叶身/端壁融合(BBEW)是有潜力支撑风扇/压气机负荷最大化的原创技术.本文以大折转亚音叶栅和超音速叶栅两类趋向负荷极限叶栅为案例,在二面角原理指导下,采用数值方法对比研究了第一类(增大二面角型)和第二类(变曲率过渡曲面)BBEW改型.结果表明,两类BBEW改型均能有效削弱或消除高负荷压气机叶栅角区分离,且具有良好的工况适应性.其中,第一类BBEW改型虽外形上类似叶片倾斜,但作用机理却截然不同,附面层交汇作用超过叶片力作用.","authors":[{"authorName":"彭学敏","id":"2863f2fe-f4c3-410e-a85a-c67f7c9a51f9","originalAuthorName":"彭学敏"},{"authorName":"季路成","id":"f060b4b3-266d-4ff9-aaad-7874dbdac512","originalAuthorName":"季路成"},{"authorName":"伊卫林","id":"991daff4-a57c-4061-920d-39f599c7e80b","originalAuthorName":"伊卫林"},{"authorName":"刘艳明","id":"413c8c1d-0cf6-41c6-b611-938f162232be","originalAuthorName":"刘艳明"}],"doi":"","fpage":"242","id":"248993cb-168c-452f-a8e9-de77c5688359","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"0d7e74be-d62c-44bb-9e8a-a84bcaf46226","keyword":"叶身/端壁融合","originalKeyword":"叶身/端壁融合"},{"id":"c150eec4-cbd5-4d16-ae6f-1c90f61fae7b","keyword":"角区分离","originalKeyword":"角区分离"},{"id":"cef65544-2ffd-46a5-9ffe-69988e1d8fef","keyword":"二面角","originalKeyword":"二面角"},{"id":"244cf4e4-1cd6-48be-a2c4-019be2230a5d","keyword":"高负荷压气机","originalKeyword":"高负荷压气机"},{"id":"acda8dba-04fc-4b6f-bf00-f58c1b3ac134","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb201402008","title":"高负荷压气机叶栅的叶身/端壁融合研究","volume":"35","year":"2014"},{"abstractinfo":"轴流式压气机叶顶泄漏流非定常性对压气机性能和稳定性有着重要影响。为了避开研究转子内部流场所遭遇的测量困难,以及为了可以更加方便地调节叶顶间隙和进气角的需要,本文以压气机平面叶栅作为研究对象,旨在通过对不同间隙,不同马赫数和不同攻角下的叶顶泄漏流的动态测量,了解叶栅环境下叶顶间隙流非定常性的特征和出现条件,探索利用叶栅模拟转子环境进行叶顶间隙流研究的可行性。实验表明,叶顶泄漏流在某些工况下存在非定常性。该非定常性的频率特征受来流速度影响较大。产生非定常性的条件是需要泄漏流轨迹到达相邻叶片的压力面。产生非定常性的主要原因是由于泄漏流与叶片载荷的相互作用。","authors":[{"authorName":"李成勤","id":"c684dcf2-c85b-42bb-8ee6-bf70a3194141","originalAuthorName":"李成勤"},{"authorName":"张靖煊","id":"bd9726ff-82d3-4a3e-9d00-a5bc1fe22ef1","originalAuthorName":"张靖煊"},{"authorName":"林峰","id":"fe482cf3-4de2-4bf5-aa8b-c7b3c1acab6b","originalAuthorName":"林峰"},{"authorName":"黄伟光","id":"0995feb0-ae86-4a78-a7ac-590eb84f5f5a","originalAuthorName":"黄伟光"}],"doi":"","fpage":"1675","id":"30644092-fa9e-4ea0-90db-6d93a04e5707","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"ed375e7f-7e7a-4577-9e8d-b916cfb2f540","keyword":"轴流压气机","originalKeyword":"轴流压气机"},{"id":"6e5b0a44-93f1-42c5-b6f7-e6f39b183732","keyword":"平面叶栅","originalKeyword":"平面叶栅"},{"id":"911de689-8bed-4fb7-8f65-eb602ec2f601","keyword":"叶顶泄漏流","originalKeyword":"叶顶泄漏流"},{"id":"56e6aaf1-4b91-4205-932b-df85a9e588ed","keyword":"非定常性","originalKeyword":"非定常性"}],"language":"zh","publisherId":"gcrwlxb201210008","title":"轴流压气机叶栅非定常叶顶泄漏流的研究","volume":"33","year":"2012"},{"abstractinfo":"进行了带尾板的常规直叶片、正弯曲叶片、反弯曲叶片组成的三种矩型压气机叶栅在低速风洞上的实验研究,测量了叶栅出口流场,分析了零冲角下尾板对叶栅出口能量损失分布情况和二次流速度矢量的影响.结果表明尾板对压气机叶栅,尤其是弯曲叶片压气机叶栅出口流场有很大的影响,反弯曲叶栅的总损失最大.","authors":[{"authorName":"王东","id":"bcf37650-aa01-455f-914d-89175cce3332","originalAuthorName":"王东"},{"authorName":"钟兢军","id":"3c39c1d4-ca98-4894-b030-ee0079680afc","originalAuthorName":"钟兢军"},{"authorName":"苏杰先","id":"39327cf0-173b-4fdc-b56c-b6fa67e79ab2","originalAuthorName":"苏杰先"},{"authorName":"王仲奇","id":"d2920da6-e29e-44ac-8e13-50f1efe9eff7","originalAuthorName":"王仲奇"}],"doi":"","fpage":"694","id":"4f81c862-7be5-4b2a-a849-0baec07fa31d","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"68d36aa8-495a-484f-b570-8ecab58253e4","keyword":"尾板","originalKeyword":"尾板"},{"id":"5d163d54-8a73-4ef9-8dfd-14b55966138a","keyword":"叶片弯曲","originalKeyword":"叶片弯曲"},{"id":"b97b3cfe-a2bf-42b1-8416-8619807d90aa","keyword":"压气机叶栅","originalKeyword":"压气机叶栅"},{"id":"d1589593-4259-4122-a851-36b264e9b925","keyword":"出口流场","originalKeyword":"出口流场"}],"language":"zh","publisherId":"gcrwlxb200106011","title":"尾板对弯曲叶片压气机叶栅出口流场的影响","volume":"22","year":"2001"},{"abstractinfo":"本文采用数值模拟研究串列叶栅后排静叶周向位置对压气机级性能的影响.通过对数值结果的分析给出了串列叶栅在压气机中级的匹配方法及两排静叶周向最佳匹配位置,结合总压损失和壁面流动详细分析了三个典型周向位置对串列叶栅流场的影响.","authors":[{"authorName":"李绍斌","id":"c5b07190-66ea-4a09-9df2-72bfdcd2859b","originalAuthorName":"李绍斌"},{"authorName":"王松涛","id":"b55347ad-08b6-4312-bae8-b7c390a3c78a","originalAuthorName":"王松涛"},{"authorName":"冯国泰","id":"55abbb64-2477-4eb6-a01e-e763b3e2cf9e","originalAuthorName":"冯国泰"},{"authorName":"王仲奇","id":"e93c44cd-edb4-469c-99f4-800bd714cff3","originalAuthorName":"王仲奇"}],"doi":"","fpage":"943","id":"73eee1ed-45ba-44b7-871b-5ceccf06e63f","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"ecb3aed3-4cdc-4a5e-975e-6913cd3eb6e2","keyword":"串列叶栅","originalKeyword":"串列叶栅"},{"id":"c8f2b45e-c407-49b2-a3fd-f398fee2e769","keyword":"周向位置","originalKeyword":"周向位置"},{"id":"89f675d1-4aa4-4248-b85e-731940a25f51","keyword":"匹配","originalKeyword":"匹配"}],"language":"zh","publisherId":"gcrwlxb200406012","title":"串列叶栅后排静叶周向位置对压气机性能影响的数值研究","volume":"25","year":"2004"},{"abstractinfo":"数值模拟了不同稠度下吸气量及位置对某大转角吸气式压气机叶栅气动性能影响.结果表明,附面层吸除(BLS)使得吸力面角区低能流体积聚减弱,气流折转能力加强;随稠度增加,叶栅总压损失最高降低分别为32.9%、27.7%和25.1%,出口气流角最大增加值为5.0°、4.2°和3.1°,即小稠度叶栅具有较佳气动性能;BLS导致的栅内扩压能力恢复和通道涡三维分离效应的改善应是确定最佳设计参数的判定原则.吸气式叶栅附面层承受逆压梯度能力强的特点为高负荷、小稠度压气机设计提供了极具潜力的技术途径.","authors":[{"authorName":"陈浮","id":"ed1d1a2c-30b9-456f-ba68-8e065d57dbd0","originalAuthorName":"陈浮"},{"authorName":"宋彦萍","id":"3c48cea8-39f5-47ad-916b-a11f8391d9ce","originalAuthorName":"宋彦萍"},{"authorName":"赵桂杰","id":"6511bfa1-6d74-4a18-bb33-0ceed1eadcb4","originalAuthorName":"赵桂杰"},{"authorName":"刘军","id":"e0978ee3-a5fc-4e04-bb43-1206e1489fd8","originalAuthorName":"刘军"},{"authorName":"王仲奇","id":"8e758ddd-cbb9-4be0-ada9-3d22c8e574ba","originalAuthorName":"王仲奇"}],"doi":"","fpage":"211","id":"ce8475eb-b992-456e-84b2-1da785cd4331","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1341779f-5deb-42e8-b545-7da80c3825ad","keyword":"附面层吸除","originalKeyword":"附面层吸除"},{"id":"908bfa51-2f12-4251-a69f-e2c1c8adcf88","keyword":"主动流动控制","originalKeyword":"主动流动控制"},{"id":"292a5353-3212-46ae-b7ba-0d4db8b9aa05","keyword":"压气机叶栅","originalKeyword":"压气机叶栅"},{"id":"d19fc8c7-6438-4c40-9c09-24c7afd7dde0","keyword":"稠度","originalKeyword":"稠度"}],"language":"zh","publisherId":"gcrwlxb200502010","title":"附面层吸除对压气机叶栅稠度特性影响","volume":"26","year":"2005"},{"abstractinfo":"在低速平面叶栅风洞中,对不同间隙大小条件下的高负荷压气机叶栅流动特性进行了实验研究.实验采用五孔气动探针测量了叶栅出口截面参数,得到了该截面的二次流速度矢量分布,并对叶栅下端壁和叶片表面进行了墨迹流动显示.结果表明,叶顶间隙的增加加剧了间隙泄漏流动与通道涡的相互作用和掺混,导致叶栅流道内的二次流结构和形态发生改变;增加叶顶间隙可完全抑制吸力面角区分离,但被间隙泄漏流动带走的低能流体被带到尾缘及其下游位置,加剧了相应位置的流动分离;间隙泄漏流动将引[起叶栅总损失的显著下降,损失的大小并不一定与间隙大小成正比.","authors":[{"authorName":"陈绍文","id":"bfded92c-c3df-487b-a014-18b6050742a8","originalAuthorName":"陈绍文"},{"authorName":"孙士珺","id":"aed8bfa6-1134-452a-80fa-b63790929c76","originalAuthorName":"孙士珺"},{"authorName":"韩东","id":"d24d3eab-4659-4c70-8c74-adfeddc6b21d","originalAuthorName":"韩东"},{"authorName":"徐皓","id":"302a808d-d75a-4190-bbad-092ef78ced71","originalAuthorName":"徐皓"},{"authorName":"王松涛","id":"41356907-b112-49c9-9d98-9ece0aa50194","originalAuthorName":"王松涛"}],"doi":"","fpage":"34","id":"2231d8a9-115b-40e3-9d37-ff18e610a7e5","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"7e5610f0-b6a2-4676-ab2d-bd6a743dc4c2","keyword":"航空、航天推进系统","originalKeyword":"航空、航天推进系统"},{"id":"dfd6adf8-355f-4a83-834a-36411f343333","keyword":"压气机叶栅","originalKeyword":"压气机叶栅"},{"id":"b2bc4048-375a-4286-90dd-cc6858a41645","keyword":"间隙","originalKeyword":"间隙"},{"id":"63c0c4c8-f4d6-42b6-8572-8e1c0fc4af18","keyword":"流动特性","originalKeyword":"流动特性"},{"id":"26389b99-b34b-45f8-a6f7-b7791ebbc6c7","keyword":"实验研究","originalKeyword":"实验研究"}],"language":"zh","publisherId":"gcrwlxb201401008","title":"间隙大小对高负荷压气机叶栅流动特性的影响","volume":"35","year":"2014"},{"abstractinfo":"采用数值模拟方法对利用不同安装方式叶尖小翼控制压气机叶栅间隙流动进行研究。结果表明,不同安装方式叶尖小翼都可以有效降低叶顶泄漏流速,削弱泄漏涡强度。叶尖小翼改变了叶尖负荷及泄漏涡运行轨迹,进而影响了叶尖流场不同涡系之间的相互作用。吸力面小翼削弱了泄漏涡,抑制了通道涡的发展,使得叶栅总损失降低。压力面小翼及组合小翼削弱了泄漏涡,但增强了通道涡及其与泄漏涡之间的相互作用,叶栅总损失增加。","authors":[{"authorName":"韩少冰","id":"a9bf3964-3e0f-41fa-886a-f19694aa8090","originalAuthorName":"韩少冰"},{"authorName":"钟兢军","id":"4e6981c4-b9d0-4c94-8cac-b2f79237108c","originalAuthorName":"钟兢军"}],"doi":"","fpage":"1492","id":"fecc99da-9a0c-421c-8b34-0cb3979d4aba","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e5909773-70f5-4c7b-b812-1fa1b0e38a3f","keyword":"叶尖小翼","originalKeyword":"叶尖小翼"},{"id":"c265e23d-576b-4bd0-8b2c-68523e770572","keyword":"压气机叶栅","originalKeyword":"压气机叶栅"},{"id":"e0ed14d2-a1dc-4545-a9e9-5a850fbe702f","keyword":"间隙流场","originalKeyword":"间隙流场"},{"id":"2a8423f1-0713-47bd-bbc0-cf885e3fcdb7","keyword":"数值研究","originalKeyword":"数值研究"}],"language":"zh","publisherId":"gcrwlxb201209008","title":"具有叶尖小翼的压气机叶栅间隙流动分析","volume":"33","year":"2012"}],"totalpage":254,"totalrecord":2531}