材料导报, 2012, 26(14): 137-140.
掺加石灰石煅烧煤矸石及其在水泥水化过程中的作用机理
韩静云 1, , 张伟 2, , 徐继承","id":"e4bd8cd8-889b-45b9-b063-4d411f1f78d3","originalAuthorName":"徐继承"},{"authorName":"胡典禄","id":"4624006b-78aa-4696-b3c3-492117cb10ad","originalAuthorName":"胡典禄"},{"authorName":"杨元政","id":"8e4e7f62-c34b-47b8-944c-587c7215c784","originalAuthorName":"杨元政"},{"authorName":"陈先朝","id":"c2018bbc-243b-47b8-810d-a82c430a1505","originalAuthorName":"陈先朝"},{"authorName":"何玉定","id":"68baba3e-0340-4884-9eab-841da4b06ece","originalAuthorName":"何玉定"}],"doi":"10.3969/ji.ssn1.001-97312.0151.70.17","fpage":"17076","id":"08a87827-bb8d-4bb5-b8b3-427fdf70208e","issue":"17","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c1ad6bbc-cbad-4e38-8129-af2dc8929069","keyword":"CuAlO2","originalKeyword":"CuAlO2"},{"id":"80de8eb9-b4b8-47c6-ace0-50e9137aff3f","keyword":"稀土掺杂","originalKeyword":"稀土掺杂"},{"id":"5ea522ca-54f9-4c00-b558-d3aa1e9fa2d4","keyword":"相结构","originalKeyword":"相结构"},{"id":"f0560237-953c-42c0-aefa-cd3ed1b76c34","keyword":"光电性能","originalKeyword":"光电性能"}],"language":"zh","publisherId":"gncl201517017","title":"Eu、Nd、Y 稀土掺杂 CuAlO2纳米粉末制备及相组织研究","volume":"","year":"2015"},{"abstractinfo":"土壤腐蚀是造成牙哈装车南站储罐底板腐蚀的重要因素,影响土壤腐蚀性的因素有很多.一旦储罐底板腐蚀穿孔,将带来巨大的经济损失,造成严重的环境污染,甚至引起火灾等严重后果.若采用单因素分析法不能综合考虑所有影响因素,采用主成分分析法(PCA)对站场内土壤腐蚀等级进行评价,去除重复数据和测量误差较大的数据,找到影响因素中的关键因素,有效评价土壤的腐蚀等级.通过测试牙哈装车南站土壤样品的理化性质,利用SPSS软件对具体试验数据进行主成分分析,实测结果主成分分析法对评价土壤腐蚀性是很有效的.","authors":[{"authorName":"王东","id":"cbe453a6-b831-46bc-9fce-f37aaa071b4d","originalAuthorName":"王东"},{"authorName":"廖柯熹","id":"627c0415-3f9d-4230-9a1c-68b1b1564a0d","originalAuthorName":"廖柯熹"},{"authorName":"李月霄","id":"50a03a7c-c152-4d65-8807-5e110a7802ec","originalAuthorName":"李月霄"},{"authorName":"徐继承","id":"2341d485-fe4a-4a61-bb66-2033c2d07c3c","originalAuthorName":"徐继承"}],"doi":"10.11973/fsyfh-201507016","fpage":"672","id":"df47e84d-544d-4d5d-b04f-7455e2f9ab03","issue":"7","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"a8e65df6-8af0-4106-870b-9d2222cf913e","keyword":"土壤腐蚀","originalKeyword":"土壤腐蚀"},{"id":"704cf348-aff7-4386-a044-4693047c50ff","keyword":"牙哈装车南站","originalKeyword":"牙哈装车南站"},{"id":"39656e26-0cea-4661-a499-146f219ed989","keyword":"主分量分析","originalKeyword":"主分量分析"},{"id":"931214ae-0952-4ff6-a566-c0bbb97df97e","keyword":"评价","originalKeyword":"评价"},{"id":"4d334e23-6b39-42ab-9e2d-43af23d06e5c","keyword":"SPSS软件","originalKeyword":"SPSS软件"}],"language":"zh","publisherId":"fsyfh201507016","title":"牙哈装车南站土壤腐蚀性评价","volume":"36","year":"2015"},{"abstractinfo":"在脉冲电磁场(PEMF)作用下,以氯化钴为母液、草酸铵为沉淀剂,采用草酸盐沉淀法制备了草酸钴粉体.利用扫描电子显微镜(SEM)对反应物及产物的形貌进行了表征,研究了反应产物与反应物之间的形貌继承性,并初步探索了草酸钴制备中的形貌继承机制.结果表明,在草酸盐沉淀法制备草酸钴的过程中,沉淀剂(父相)草酸根所承载的遗传信息在产物的显性性状中表现相对较弱,产物更多地继承了其母液(母相)氯化钴的形貌特征.脉冲电磁场作用造成的反应物形貌的改变,可以通过反应将此信息传递给产物,并使母相的形貌遗传作用加倍凸显出来.","authors":[{"authorName":"彭淑静","id":"e9c326e6-bb57-4b47-82c9-9dbe6b1a96a7","originalAuthorName":"彭淑静"},{"authorName":"王建中","id":"fedc76fb-297b-4327-a2c8-5d119a4b691e","originalAuthorName":"王建中"},{"authorName":"杜慧玲","id":"dda09185-6803-43e1-ad4b-904a6ef2d801","originalAuthorName":"杜慧玲"}],"doi":"10.14136/j.cnki.issn 1673-2812.2016.04.008","fpage":"550","id":"c41ee6fe-3d11-414d-83f2-eff40b595565","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"2b56b976-b5b0-406c-97e1-18025ba15231","keyword":"草酸钴","originalKeyword":"草酸钴"},{"id":"346558fd-4327-4c43-b5e5-e583164aeafd","keyword":"沉淀法","originalKeyword":"沉淀法"},{"id":"076a8b02-9092-4b3d-9882-6566b72b2448","keyword":"形貌继承性","originalKeyword":"形貌继承性"},{"id":"369accac-df05-43fc-af03-b09120609b2e","keyword":"脉冲电磁场","originalKeyword":"脉冲电磁场"}],"language":"zh","publisherId":"clkxygc201604008","title":"草酸钴制备中的形貌继承性初探","volume":"34","year":"2016"},{"abstractinfo":"单轴、双轴和三轴徐变试验结果表明,混凝土的徐变与弹性变形一样具有空间特性,但根据单轴徐变试验得到的徐变系数、徐变泊松比以及采用叠加原理计算的双轴、三轴应力状态下的空间徐变与实际情况存在较大偏差.为了准确计算不同应力状态下混凝土的空间徐变,介绍了应力组合对有效徐变泊松比的影响和基于有效徐变泊松比的空间徐变计算方法.另外,根据应力张量的弹性力学意义,引入了球应力徐变系数(ψ)m和偏应力徐变系数(ψ) d,提出了基于这两个徐变系数的空间徐变计算统一表达式,可计算混凝土在单轴、双轴和三轴等不同应力状态下的空间徐变.","authors":[{"authorName":"黄胜前","id":"f60fe1e8-6699-466b-8f2e-355e391d0c51","originalAuthorName":"黄胜前"},{"authorName":"杨永清","id":"0ad9d4be-4c12-4497-a380-8dee2c8f7ad4","originalAuthorName":"杨永清"},{"authorName":"李晓斌","id":"a5e2e801-c9b9-4f4b-886e-c62ae3c23491","originalAuthorName":"李晓斌"},{"authorName":"陈志伟","id":"db16b3f8-4c53-49d7-bdd3-f6cf5f2247c1","originalAuthorName":"陈志伟"}],"doi":"","fpage":"150","id":"77593762-6ffb-4cfa-913f-f64ffef2186c","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"69ea1570-d4c9-437e-bfef-97ae77a244a5","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"9785e9c9-1fc1-4ea3-ab52-a37f97e3f32e","keyword":"单轴","originalKeyword":"单轴"},{"id":"4565bb1b-db4a-4cd3-8595-f4cc47900c42","keyword":"双轴","originalKeyword":"双轴"},{"id":"59877901-b9f9-4bd2-a23d-bca130502b51","keyword":"三轴","originalKeyword":"三轴"},{"id":"375cdb53-1ae1-4106-b024-cece1bb5b8eb","keyword":"应力状态","originalKeyword":"应力状态"},{"id":"2edbc816-e655-4662-9602-f0529134d608","keyword":"空间徐变","originalKeyword":"空间徐变"}],"language":"zh","publisherId":"cldb201302040","title":"不同应力状态下混凝土空间徐变的统一表达式","volume":"27","year":"2013"},{"abstractinfo":"为了研究不同配合比设计方法对再生混凝土长期徐变性能的影响,分别采用等体积砂浆法(EMV法)与传统替代法配制再生混凝土,测试各组再生混凝土试件28 d龄期后自然条件下持荷的变形值和相同试验条件下试件的收缩值,并计算各组试件的徐变度.研究结果表明:两种方法配制的再生混凝土的收缩徐变变化规律与对比普通混凝土相似.EMV法可有效改善再生混凝土的徐变性能,具有较低的徐变度.","authors":[{"authorName":"霍俊芳","id":"55188923-049c-49aa-994c-ac564398860f","originalAuthorName":"霍俊芳"},{"authorName":"李晨霞","id":"8fa10b03-f76b-44b4-97ee-bd67d36d407e","originalAuthorName":"李晨霞"},{"authorName":"侯永利","id":"83d612b7-ba2c-46d3-a2ff-d86f396b5f77","originalAuthorName":"侯永利"},{"authorName":"吕笑岩","id":"98dd9616-8bca-4990-9631-ef1c189dce52","originalAuthorName":"吕笑岩"}],"doi":"","fpage":"723","id":"dc2db04e-0a0c-4741-830f-d84f7a4e5aee","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"d2a7136a-24da-4dc5-b2c8-c753ce344b72","keyword":"再生混凝土","originalKeyword":"再生混凝土"},{"id":"46b36702-7dae-4dad-b1c2-1996ae105250","keyword":"配合比","originalKeyword":"配合比"},{"id":"69440820-bb2f-4272-abe2-bdc4edbd2d6e","keyword":"徐变","originalKeyword":"徐变"}],"language":"zh","publisherId":"gsytb201702054","title":"再生粗骨料混凝土收缩徐变性能试验","volume":"36","year":"2017"},{"abstractinfo":"本文阐述了FRP应力松弛、徐变性能的研究意义,总结了国内外关于应力松弛、徐变性能的最新研究成果及主要影响因素,并探讨了应力松弛和徐变的计算模型,对未来FRP长期性能研究的发展方向做出了展望.","authors":[{"authorName":"李建辉","id":"0f7148fe-f8bb-4e01-9827-43b6d6088f0a","originalAuthorName":"李建辉"},{"authorName":"邓宗才","id":"734ba4b3-500c-4ca4-adda-8e3a09ca07b3","originalAuthorName":"邓宗才"}],"doi":"10.3969/j.issn.1003-0999.2007.03.016","fpage":"56","id":"59ffbb46-47b1-40d6-8ec4-254b9f0174de","issue":"3","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"3192da00-b6fe-4a92-a3fe-eec5f9cca17e","keyword":"FRP","originalKeyword":"FRP"},{"id":"812f44d9-8adc-47b7-95e7-d14c2fe8670d","keyword":"应力松弛","originalKeyword":"应力松弛"},{"id":"37e0f5f2-7caa-403e-96f9-d45fa60555ee","keyword":"徐变","originalKeyword":"徐变"},{"id":"290bc541-6726-480e-a116-34147a7cb2ae","keyword":"前景展望","originalKeyword":"前景展望"}],"language":"zh","publisherId":"blgfhcl200703016","title":"FRP应力松弛及徐变性能的研究近展","volume":"","year":"2007"},{"abstractinfo":"为获得厚板-薄壁构件成形过程中应力演变对变形的影响规律,运用铣削加工有限元应力仿真和实验应力测试技术,研究了厚板到薄壁构件阶段应力演变的规律,阐述了应力分布特征。结果表明:薄壁件应力特征分为两部分,一部分以构件变形机制驱动的继承了原有应力分布特征的底部应力场,另一部分则是可进行变形控制的对原有应力分布兼有继承和释放效果的薄壁应力场;加工应力固然影响构件变形,但初始应力和构件形状分布对其影响更显著,并在此基础上提出了薄壁构件变形的控制策略。","authors":[{"authorName":"廖凯","id":"0f0c71fb-b741-423a-a4f3-4eac2879ab8e","originalAuthorName":"廖凯"},{"authorName":"王伟","id":"c6ee51f5-52bc-4aab-91df-1eaee0e7737c","originalAuthorName":"王伟"},{"authorName":"吴运新","id":"11701317-e36b-4726-921d-41ce016b664f","originalAuthorName":"吴运新"},{"authorName":"龚海","id":"394434a4-9f28-49c0-b63f-90c044f59196","originalAuthorName":"龚海"},{"authorName":"王晓燕","id":"75c5e8f7-c4f3-471a-8703-28ecffa3fa71","originalAuthorName":"王晓燕"}],"doi":"10.11951/j.issn.1005-0299.20150309","fpage":"44","id":"450e01e3-eaac-4aae-a795-6dfd900c4e67","issue":"3","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"311e28ce-497f-4a6e-ac03-75684c6e1cdc","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"7a183524-8a89-4535-a399-f885353a1e1b","keyword":"薄壁构件","originalKeyword":"薄壁构件"},{"id":"a86f09ec-c11b-4888-a2a5-df0e5c4a24eb","keyword":"应力测试","originalKeyword":"应力测试"},{"id":"10a33010-0fea-4037-a7e9-e3de5e5c7e21","keyword":"铣削加工","originalKeyword":"铣削加工"},{"id":"4cc6e2e7-3bf8-4365-ac59-060c19068cf0","keyword":"仿真","originalKeyword":"仿真"}],"language":"zh","publisherId":"clkxygy201503010","title":"铝合金薄壁构件应力继承机制与分布特征研究","volume":"","year":"2015"},{"abstractinfo":"采用自制的徐变加载装置,研究了聚乙烯醇(PVA)纤维、双掺粉煤灰和矿渣以及减缩剂对7d等强度混凝土徐变性能的影响规律,结合与混凝土同水胶比浆体的化合结合水量分析了其影响机理.结果表明,混凝土徐变系数发展较快,加载100d左右趋于稳定;减缩剂和双掺矿物掺合料均明显降低了混凝土的徐变系数,以掺减缩剂效果更好,450d值仅为0.63,而PVA纤维增加了徐变系数;混凝土的徐变系数随浆体化学结合水量的增加而降低,60d早龄期浆体水化有利于降低徐变系数,450d后期水化产物对降低混凝土的徐变系数贡献不大.","authors":[{"authorName":"何智海","id":"d284a902-9f8e-4b08-94b4-bb64a0ab69a8","originalAuthorName":"何智海"},{"authorName":"钱春香","id":"0ffbbe0c-1b53-4782-aa33-1b1c9ed2432d","originalAuthorName":"钱春香"},{"authorName":"钱桂枫","id":"dd861e3b-72df-4e42-acc8-72f6bb385518","originalAuthorName":"钱桂枫"},{"authorName":"孟凡利","id":"28a07ab2-0d08-4d67-b8cb-ea65ad3f7ef0","originalAuthorName":"孟凡利"},{"authorName":"程飞","id":"8f433d59-aca3-4626-a346-16e01790b998","originalAuthorName":"程飞"},{"authorName":"高祥彪","id":"6c683991-a878-456e-ae60-df7fce0e0d8b","originalAuthorName":"高祥彪"},{"authorName":"庄园","id":"e0d49cad-3f8c-4544-8501-e47b67079e01","originalAuthorName":"庄园"}],"doi":"","fpage":"925","id":"012cf742-03f0-418f-88af-49ca86d1e1fb","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"7473f418-c202-45ab-81d0-4cf29e9e7c03","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"48514fe2-20e4-4695-aa58-fea087a0e070","keyword":"徐变系数","originalKeyword":"徐变系数"},{"id":"67a4ff0b-a8af-44ec-bfc8-714b1c72b529","keyword":"化学结合水","originalKeyword":"化学结合水"},{"id":"76f5dbf7-811b-463b-8ed6-5e1d515f895b","keyword":"减缩剂","originalKeyword":"减缩剂"},{"id":"5ea7a23a-4846-468e-a494-01c352107864","keyword":"等强度","originalKeyword":"等强度"}],"language":"zh","publisherId":"gncl201105040","title":"等强度下混凝土组分对徐变性能的影响","volume":"42","year":"2011"},{"abstractinfo":"采用自制的徐变加载装置,研究了萘系减水剂、聚羧酸减水剂以缓凝组分、减缩组分对等配合比混凝土徐变的影响规律,结合与混凝土同水灰比浆体非可蒸发水含量及混凝土内部相对湿度演化分析了其影响机理.结果表明,相比萘系减水剂,聚羧酸减水剂能显著降低混凝土的徐变,其中以早强型聚羧酸减水剂的效果最好;减缩剂对混凝土的徐变有降低作用,缓凝组分的掺入对徐变有不利影响;聚羧酸减水剂和减缩组分能通过降低混凝土内部水分传输和向外界扩散来降低徐变;早强型聚羧酸使浆体具有较多的水化产物数量,对强度的增加和徐变的降低有一定好处,缓凝组分的掺入会延缓水化并减少总水化产物数量,降低强度,使徐变增加.","authors":[{"authorName":"张异","id":"ec340278-6d5c-4d88-99cd-92ecbf14c3de","originalAuthorName":"张异"},{"authorName":"钱春香","id":"6283fdf1-1e86-4f95-9386-4d0f621336ae","originalAuthorName":"钱春香"},{"authorName":"赵飞","id":"c2e62026-2cba-44d3-98ea-9c4bea97ae2a","originalAuthorName":"赵飞"},{"authorName":"何智海","id":"e248a81c-0309-4f52-948c-33abefbfdb85","originalAuthorName":"何智海"},{"authorName":"曲军","id":"8ffd3667-7c95-4a2c-8af6-473aba7b8aff","originalAuthorName":"曲军"},{"authorName":"郭景强","id":"bb3a41ea-646e-4070-aa43-4fa748725358","originalAuthorName":"郭景强"},{"authorName":"","id":"3c1baf9a-ef00-41d3-b730-79569cbe2b9d","originalAuthorName":""}],"doi":"10.3969/j.issn.1001-9731.2013.11.023","fpage":"1620","id":"d3cbe933-f50e-4134-ab17-c124ad18db38","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"66f7978b-6b62-4021-bd9e-469d3dde0824","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"8efa8ed0-5daf-4d86-9e26-abc4fd830f4e","keyword":"徐变度","originalKeyword":"徐变度"},{"id":"5996e33b-b097-423e-8fbf-add299a3954b","keyword":"减水剂","originalKeyword":"减水剂"},{"id":"3c88bb35-44c2-4bbe-8948-58e858e7e724","keyword":"非可蒸发水","originalKeyword":"非可蒸发水"},{"id":"4ea69246-a041-47fb-b0a5-bf55e9a04887","keyword":"内部相对湿度","originalKeyword":"内部相对湿度"}],"language":"zh","publisherId":"gncl201311023","title":"化学外加剂对混凝土徐变的影响规律研究","volume":"44","year":"2013"},{"abstractinfo":"通过试验研究了两种水胶比分别为0.33和0.29的自密实轻骨料混凝土(SCLC)的收缩和徐变性能,并与配合比相似的普通骨料自密实混凝土(SCC)及强度接近的普通混凝土(NC)进行了对比.收缩试验从入模后12小时开始,至6个月结束.徐变试验从3天龄期开始加载,分别在7、14、21和28天继续加载,而后保持荷载不变,加载应力水平分别为相应龄期抗压强度的40%,持续12个月.试验结果表明:SCLC前10天龄期有轻微膨胀现象,收缩变形始终小于SCC和NC,至6个月时三者有接近趋势;360天龄期SCLC徐变系数低于NC和SCC,而徐变度则高于NC,与SCC相当;随着抗压强度的提高,SCLC的徐变系数和徐变度均有减小趋势.","authors":[{"authorName":"张云国","id":"16e79cf1-667b-4b63-a680-75192c67cc80","originalAuthorName":"张云国"},{"authorName":"吴熙","id":"c8c8bf57-2238-443e-b3f5-68faf6c95c1b","originalAuthorName":"吴熙"},{"authorName":"毕巧巍","id":"53a4a4dd-eb63-489e-b93b-8843a640a8f5","originalAuthorName":"毕巧巍"}],"doi":"","fpage":"35","id":"f5a97de4-eadc-4787-a106-96421737e788","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"7fcb2640-af48-423a-90f7-db4c26ea5cbf","keyword":"自密实轻骨料混凝土","originalKeyword":"自密实轻骨料混凝土"},{"id":"6fdf6cba-8402-435d-b3d3-27f13262dac3","keyword":"工作性能","originalKeyword":"工作性能"},{"id":"c59a40e0-7825-4deb-bf9b-3546aa6dcfc0","keyword":"收缩","originalKeyword":"收缩"},{"id":"18387f5c-7d51-4bb5-ac2c-1d89f8063394","keyword":"徐变","originalKeyword":"徐变"}],"language":"zh","publisherId":"clkxygc201401008","title":"自密实轻骨料混凝土的收缩与徐变性能","volume":"32","year":"2014"}],"totalpage":16,"totalrecord":159}