欢迎登录材料期刊网

材料期刊网

高级检索

通过对镍基合金GH80A进行大变形异步与同步轧制,制备了纳米组织材料,研究了退火处理对纳米组织GH80A材料的组织与力学性能的影响.结果表明,大变形轧制后的材料的晶粒细化至约50 nm,其抗拉强度从646 MPa提升至1787 MPa,在700℃下进行退火处理后,抗拉强度可以达到2111MPa;退火温度对取向影响不大.所制备的超细晶材料具有良好的组织热稳定性,在700℃下退火,晶粒尺寸约150 nm,在800℃下退火1h,晶粒尺寸仍然能够保持在250 nm以下.分析认为,超细晶镍基GH80A材料的组织稳定性与强度的显著提高与γ'相的析出有直接关系.

参考文献

[1] 于秋颖;董建新;张麦仓;谢锡善;姚志浩.热处理制度对超超临界电站用GH80A合金组织和性能的影响[J].稀有金属材料与工程,2013(7):1507-1512.
[2] Yulai Xu;Caixiong Yang;Xueshan Xiao;Xiuli Cao;Guoqing Jia;Zhi Shen.Strengthening behavior of Al and Ti elements at room temperature and high temperature in modified Nimonic 80A[J].Materials Chemistry and Physics,20122/3(2/3):706-715.
[3] I. Sabirov;M.T. Perez-Prado;J.M. Molina-Aldareguia.Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route[J].Scripta materialia,20111(1):69-72.
[4] Wacek Pachla;Mariusz Kulczyk;Malgorzata Sus-Ryszkowska;Andrzej Mazur;Krzysztof J. Kurzydlowski.Nanocrystalline titanium produced by hydrostatic extrusion[J].Journal of Materials Processing Technology,20081/3(1/3):173-182.
[5] Yuntian T. Zhu;Terry C. Lowe;Terence G. Langdon.Performance and applications of nanostructured materials produced by severe plastic deformation[J].Scripta materialia,20048(8):825-830.
[6] Chuan Ting Wang;Nong Gao;Mark G. Gee;Robert J. K. Wood;Terence G. Langdon.Effect of grain size on the micro-tribological behavior of pure titanium processed by high-pressure torsion[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2012:28-35.
[7] Li, Z.;Fu, L.;Fu, B.;Shan, A..Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:309-318.
[8] Kuk Hyun Song;Han Sol Kim;Won Yong Kim.Enhancement of Grain Refinement and Meehanical Properties of Cross-Roll Rolled Pure Copper[J].Materials transactions,20115(5):1070-1073.
[9] 陈云龙 .异步轧制对纯铁及TWIP钢组织性能影响的研究[D].上海交通大学,2009.
[10] 左方青 .纯铝异步轧制剪切形变直接观察及组织性能研究[D].上海交通大学,2008.
[11] 李志明;蒋建华;单爱党.异步轧制工业纯钛的组织与力学性能[J].上海有色金属,2011(4):151-155.
[12] 蒋建华;丁毅;陈云龙;单爱党.异步轧制TWIP钢的力学性能和微观组织[J].钢铁,2011(11):77-81.
[13] A. A. Popov;I. Yu. Pyshmintsev;S. L. Demakov;A. G. Illarionov;T. C. Lowe;A. V. Sergeyeva;R. Z. Valiev.Structural and mechanical properties of nanocrystalleve titanium processed by severe plastic deformation[J].Scripta materialia,19977(7):1089-1094.
[14] M. FURUKAWA;Z. HORITA;M. NEMOTO.MICROHARDNESS MEASUREMENTS AND THE HALL-PETCH RELATIONSHIP IN AN Al-Mg ALLOY WITH SUBMICROMETER GRAIN SIZE[J].Acta materialia,199611(11):4619-4629.
[15] Sun, Yanle;Xu, Songqian;Shan, Aidang.Effects of annealing on microstructure and mechanical properties of nano-grained Ni-based alloy produced by severe cold rolling[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:181-188.
[16] Caceres, CH;Griffiths, JR;Pakdel, AR;Davidson, CJ.Microhardness mapping and the hardness-yield strength relationship in high-pressure diecast magnesium alloy AZ91[J].Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing,20051-2(1-2):258-268.
[17] Huang X;Hansen N;Tsuji N.Hardening by annealing and softening by deformation in nanostructured metals.[J].Science,20065771(5771):249-251.
[18] Wei Zeng;Yao Shen;Ning Zhang.Rapid hardening induced by electric pulse annealing in nanostructured pure aluminum[J].Scripta materialia,20123/4(3/4):147-150.
[19] Naoya Kamikawa;Xiaoxu Huang;Nobuhiro Tsuji.Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed[J].Acta materialia,200914(14):4198-4208.
[20] Mirzakhani, Bahman;Payandeh, Yousef.Combination of sever plastic deformation and precipitation hardening processes affecting the mechanical properties in Al-Mg-Si alloy[J].Materials & design,2015Mar.(Mar.):127-133.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%