欢迎登录材料期刊网

材料期刊网

高级检索

本文基于第一性原理对硅取代、掺杂石墨烯纳米带不同位置的电子能带结构、态密度及电子器件的电子输运性质进行了分析与研究.结果表明,锯齿形石墨烯纳米带(ZGNRs)在硅原子取代及掺杂后由原来的半导体态转变为金属态.在各种模型中,对于体系态密度有贡献的一般为原子指数为1、在p轨道的硅原子(Si1p);原子指数为2、在p轨道的硅原子(Si2p)和碳原子(C2p);少量的原子指数为1、在s轨道的氢原子(H1s)和碳原子(C1s).经分析,在各取代位置中两端硅原子取代的锯齿形石墨烯纳米带的体系能量最小,表明其为最有可能发生的取代位置.在掺杂位置中,体系能量计算结果显示填隙硅原子的能量更低,最有可能发生此种掺杂.电子输运性质的研究中,在所有的取代位置中单边硅原子取代组成的电子器件电子输运性质最好.在所有电子器件模型中电子输运性质最好的是填隙硅原子掺杂模型.

参考文献

[1] Chae HK;Siberio-Perez DY;Kim J;Go Y;Eddaoudi M;Matzger AJ .A route to high surface area, porosity and inclusion of large molecules in crystals[J].Nature,2004(6974):523-527.
[2] Schadler LS.;Ajayan PM.;Giannaris SC. .Load transfer in carbon nanotube epoxy composites[J].Applied physics letters,1998(26):3842-3844.
[3] Changgu Lee;Xiaoding Wei;Jeffrey W. Kysar;James Hone .Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J].Science,2008(5887):385-388.
[4] Novoselov KS;Jiang Z;Zhang Y;Morozov SV;Stormer HL;Zeitler U;Maan JC;Boebinger GS;Kim P;Geim AK .Room-temperature quantum Hall effect in graphene.[J].Science,2007(5817):1379-0.
[5] Dmitry V. Kosynkin;Amanda L. Higginbotham;Alexander Sinitskii;Jay R. Lomeda;Ayrat Dimiev;B. Katherine Price;James M. Tour .Longitudinal Unzipping Of Carbon Nanotubes To Form Graphene Nanoribbons[J].Nature,2009(7240):872-876.
[6] Wang, ZY;Li, N;Shi, ZJ;Gu, ZN .Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air[J].Nanotechnology,2010(17):175602:1-175602:4.
[7] Nan Li;Zhiyong Wang;Keke Zhao .Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method[J].Carbon: An International Journal Sponsored by the American Carbon Society,2010(1):255-259.
[8] Wu, Z.-S.;Ren, W.;Gao, L.;Zhao, J.;Chen, Z.;Liu, B.;Tang, D.;Yu, B.;Jiang, C.;Cheng, H.-M. .Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation[J].ACS nano,2009(2):411-417.
[9] 欧阳方平,徐慧,魏辰.Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究[J].物理学报,2008(02):1073-1077.
[10] Wei Sun Leong;Muhammad Afiq Nurudin;Sohail Anwar;Mohammad Taghi Ahmadi;Razali Ismail .Effect of Graphene Nanoribbons Layers on Its Band Energy and the Electrical Properties[J].Journal of computational and theoretical nanoscience,2012(12):2082-2085.
[11] Weihua Wang;Guozhong Zhao.First principles study of the electronic energy bands and state density of lithium-doped narrow armchair graphene nanoribbons[J].Solid State Communications,2013:6-11.
[12] T.S. Li;M.F. Lin;C.Y. Lin.Electronic properties of curved graphene nanoribbons[J].Synthetic Metals,2013:7-14.
[13] Hu, T.;Han, Y.;Dong, J..Edge reconstructions of hexagonal boron nitride nanoribbons: A first-principles study[J].Physica, E. Low-dimensional systems & nanostructures,2013:191-196.
[14] Pei Shan Emmeline Yeo;Michael B. Sullivan;Kian Ping Loh .First-principles study of the thermoelectric properties of strained graphene nanoribbons[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,2013(36):10762-10767.
[15] Zhang, X.-J.;Chen, K.-Q.;Tang, L.-M.;Long, M.-Q. .Electronic transport properties on V-shaped-notched zigzag graphene nanoribbons junctions[J].Physics Letters, A,2011(37):3319-3324.
[16] 代波,邵晓萍,马拥军,裴重华.新型碳材料--石墨烯的研究进展[J].材料导报,2010(03):17-21.
[17] Ping Lou .Effects of edge hydrogenation in zigzag silicon carbide nanoribbons: stability, electronic and magnetic properties, as well as spin transport property[J].Journal of Materials Chemistry, C. materials for optical and electronic devices,2013(17):2996-3003.
[18] Taylor J.;Wang J.;Guo H. .Ab initio modeling of quantum transport properties of molecular electronic devices - art. no. 245407[J].Physical Review.B.Condensed Matter,2001(24):245407-1-245407-13.
[19] Zuanyi Li;Haiyun Qian;Jian Wu;Bing-Lin Gu;Wenhui Duan .Role of Symmetry in the Transport Properties of Graphene Nanoribbons under Bias[J].Physical review letters,2008(20):231-234.
[20] Minggang Zeng;Lei Shen;Miao Zhou;Chun Zhang;Yuanping Feng .Graphene-based bipolar spin diode and spin transistor: Rectification andamplification of spin-polarized current[J].Physical review, B. Condensed matter and materials physics,2011(11):115427:1-115427:6.
[21] Taisuke Ozaki;Kengo Nishio;Hongming Weng;Hiori Kino .Dual spin filter effect in a zigzag graphene nanoribbon[J].Physical review, B. Condensed matter and materials physics,2010(7):075422:1-075422:5.
[22] Yun Ren;Ke-Qiu Chen .Effects of symmetry and Stone-Wales defect on spin-dependent electronic transport in zigzag graphene nanoribbons[J].Journal of Applied Physics,2010(4):044514-1-044514-6.
[23] Dai ZX;Zheng XH;Shi XQ;Zeng Z .Effects of contact geometry on transport properties of a Si-4 cluster[J].Physical review, B. Condensed matter and materials physics,2005(20):5408-1-5408-9-0.
[24] K. Stokbro;J. Taylor;M. Brandbyge;J.-L. Mozos;P. Ordejon .Theoretical study of the nonlinear conductance of Di-thiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds[J].Computational Materials Science,2003(1/2):151-160.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%