欢迎登录材料期刊网

材料期刊网

高级检索

热透波材料技术是高超声速飞行器实现通讯与精确导航的关键技术,文章从热透波材料体系、热透波材料热电行为和高温电性能测试技术等方面对热透波材料及其相关技术的发展现状进行了简要介绍。在材料体系方面,石英陶瓷及二氧化硅基复合材料是目前应用的主要材料品种,多孔氮化物陶瓷及陶瓷基复合材料是未来发展的重要方向。在热电行为研究方面,对典型氧化物、氮化物、氮氧化物材料热电行为规律及杂质离子对材料热电行为的影响等方面的研究获得重要进展,并获得试验验证。在高温电性能测试方面,近年来突破了1600℃高温宽频测试关键技术,并获得了氧化硅熔融态介电性能实测数据,国外和国内已实现8MW/m^2热透波实时测试。

the technique of high temperature wave-transparent materials is the key technique for the communication and navigation of hypersonic vehicles. This paper reviews the research and developments of high temperature wave-transparent materials and relative fields in recent years, including the material system, the high temperature dielectric properties and the high temperature dielectric parameters measurement. For material system, the quartz ceramics and quartz fiber rein- forced composites are the main applicable materials so far; the porous nitride ceramics and composites will be an important development trend in the future. For the high temperature dielectric properties, the important progress and experimental verification have been made on the high temperature dielectric behaviors of typical oxides, nitrides and nitrogen oxide as well as the effects of impurities on dielectric properties. For the high temperature dielectric parameters measurement, the key technique of board band dielectric measurement from room temperature to 1 600 ~C has been developed recently and the dielectric parameters of tusing silicon oxide have been successfully obtained for the first time. Moreover, the real-time measurements for high temperature wave-transparent properties under the condition of 8 MW/m^2 heat flux are achieved.

参考文献

[1] 黎义,张大海,陈英,高文.航天透波多功能材料研究进展[J].宇航材料工艺,2000(05):1-5.
[2] 李金刚,曹茂盛,张永,林海波.国外透波材料高温电性能研究进展[J].材料工程,2005(02):59-62.
[3] Lewis D;Spann J R.Assement of New Radome Matmial as Re-placement for Pyroceram 9606[A].Washington D C:Naval Research Laboratory,1982:429-436.
[4] V.S.Kiiko;I.A.Dmitriev;Yu.N.Makurin;A.A.Sofronov;A.L.Ivanovskii .Synthesis and Application of Transparent Beryllium Ceramics[J].Glass Physics and Chemistry: A Journal on the Structural, Physical, and Chemical Properties and Nature of Inorganic Glasses and Glass-Forming Melts,2004(1):109-111.
[5] Banjuraizah J;Mohamad H;Ahmad Z A .Thermal Expansion Co-efficient and Dielectric Properties of Non-Stoiehiometrie Cordierite Compositions with Excess MgO Mole Ratio Synthesized from Mainly Kaolin and Talc by the Glass Crystallization Method[J].Journal of Alloys and Compounds,2010,494(1 ,2):256-260.
[6] Harris J N;Bomar S H.High-Strength,Broadband,Light-weight Silicon Oxide Radome Techniques .Technical Report AFAL-TR -68 -71[M].
[7] Place T M;Bridges D W.Fused Quartz Reinforced Silica Composites[A].Georgia Institute of Technology,1970:338-342.
[8] 高冬云,王树海,潘伟,赵浩.高速导弹天线罩用无机透波材料[J].现代技术陶瓷,2005(04):33-36.
[9] Jane' s Information Group .Jane' s Strategic Weapon Systems[R].Jane' s Air-Launched Weapons,2009 :51.
[10] Sun Z Q;Li M S;Zhou Y C .Thermal Properties of Single-PhaseY2 SiO2[J].Journal of Europan Ceramic Society,2009,29:551-557.
[11] Sun Z Q;Wang J Y;Li M S et al.Mechanical Properties and Damage Tolerance of Y2 SiO5 [J 1[J].Journal of European Ceramic Saciety,2008,28:2895-2901.
[12] Sun Z Q;Zhou Y C;Wang J Y et al.Thermal Properties and Thermal Shock Resistance ofT-Y2Si207[J].Am Ceram,2008,91(08):2623-2629.
[13] Sun Z Q;Zhou Y C;Wang J Y et al.T-Y2Si207,a Machin-able Silicate Ceramics:Mechanical Properties and Machinability[J].American Ceramic Society,2007,98(08):2535-2541.
[14] Tong Q F;Wang J Y;Li Z P et al.Low-Temperature Synthe-sis/Densification and Properties of Si2N20 Prepared with Li20 Additive[J].Journal of the European Ceramic Society,2007,27:4767-4772.
[15] Gilreath M C;Castellows L .High Temperature Dielectric Proper-ties of Candidate Space-Shuttle Thermal Protection System and Antenna-Window Material[R].Washington:NASA,1974.
[16] Braze1 J P;Fenton R.ADL4D:A Silica/Silica Composite for Hardened Antenna Windows[A].Georgia Institute of Technology,1976
[17] 胡连成;黎义;于翘 .俄罗斯航天透波材料现状考察[J].宇航材料工艺,1994,24(01):48-52.
[18] J.Economy .Exploratory development on formation of high strength,high modulus boron nitride continuous filament yarns.AD-901949[R].,1972.
[19] 张铭霞,程之强,任卫,杨辉,罗恒前.前驱体法制备氮化硼纤维的研究进展[J].现代技术陶瓷,2004(01):21-25.
[20] 韩桂芳,张立同,成来飞,徐永东.二维石英纤维增强多孔Si3N4-SiO2基复合材料的制备及其力学性能[J].复合材料学报,2007(01):91-96.
[21] 王思青,张长瑞,曹峰,齐共金,姜勇刚.先驱体浸渍裂解法制备三维编织石英纤维/氮化物复合材料[J].稀有金属材料与工程,2007(z1):615-618.
[22] Goldend K E.The Prediction and Measure of Dielectric Proper-ties and RF Transmission through Ablating BN Antenna Windows[A].California:Palo Alto,1981:23-25.
[23] J.ARNOLD;L.T.HANAWA .Plasma ARC Test Technique for Evaluating Antenna Window RF Transmission Performance.AIAA-82-0900[R].Washington D C:American Institute of Aeronautics and Astro-nautics,1982.
[24] 曹江 .介质材料电磁参数测量综述[J].宇航汁测技术,1994,13(03):30-34.
[25] Gregory A P;Etzel S;Clarke R N.Precise Measurements on Dielectric Reference Liquids Over the Temperature Range 5 -50/ spl deg/C Using Coaxial Line Methods[A].,2000:455-456.
[26] Baker-Jarvis J;Janezie M;Riddle B et al.Dielectric and Con-ductor-Loss Characterization and Measurements on Electroni( Packaging Materials.NIST Technical Note 1520[R].,2001.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%