欢迎登录材料期刊网

材料期刊网

高级检索

研究了碳和锰含量对淬火中锰马氏体钢的位错密度、残余奥氏体含量、晶粒尺寸等组织结构以及室温力学性能的影响。借助于SEM、EBSD、TEM和XRD表征了材料的微观组织,探讨了马氏体钢的强化机制。结果表明:随着碳含量增加,淬火中锰钢的位错密度和残余奥氏体体积分数逐渐增加,板条束和板条块尺寸逐渐细化,大角晶界百分数逐渐增加,强度逐渐升高;增加锰含量能够提高马氏体钢的位错密度和抗拉强度。分析认为,位错强化和细晶强化是淬火中锰马氏体钢的主要强化机制。马氏体板条尺寸是马氏体抗拉强度的结构控制单元,而原奥氏体晶粒尺寸则是马氏体屈服强度的结构控制单元。

Effect of carbon and manganese content on the mechanical properties and microstructure characteristics of the medium manganese steels quenched in oil,such as dislocation density,volume fraction of retained austenite and grain size were investigated.Microstructures of the medium manganese steels were observed by SEM/EBSD,TEM and XRD techniques and tensile test was conducted at room temperature to examine their mechanical properties.Strengthening mechanisms operating in martensitic steel and the effects of carbon content on the strengthening contributions of the grain refinement and dislocation were discussed.It is found that increasing the carbon content increases the dislocation density,volume of retained austenite and the percent of high angel grain boundaries,but decreases the size of packet and block.This in turn increases the yield strength and tensile strength.Increasing manganese content increases the dislocation density and tensile strength.Dislocation strengthening and grain refinement strengthening are the main strengthening mechanisms operating in as-quenched martensitic steels.According to the strengthening calculation,it is proposed that the microstructure unit controlling the strength of martensite steels is the pre-austenite grain size for the yield strength but the lath size for the tensile strength.

参考文献

[1] R. Song;D. Ponge;D. Raabe .Influence of Mn content on the microstructure and mechanical properties of ultrafine grained C-Mn steels[J].ISIJ International,2005(11):1721-1726.
[2] Enomoto M .Influence of Solute Drag on the Growth of Pro- euteetoid Ferrite in Fe-C-Mn Alloy[J].Acta Materialia,1999,47(13):3533.
[3] 方鸿生,冯春,郑燕康,杨志刚,白秉哲.新型Mn系空冷贝氏体钢的创制与发展[J].热处理,2008(03):2-19.
[4] Roberts M J .Effect of Transformation Substructure on the Strength and Toughness of Fe-Mn Alloys[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1970,1(12):3287.
[5] Krauss G .Martensite in Steel:Strength and Structure[J].Materials Science and Engineering,1999,A273-275:40.
[6] Morito S;Tanaka H;Konishi R et al.The Morphology and Crystallography of Lath Martensite in Fe-C Alloys[J].Aeta Materialia,2003,51:1789.
[7] Swarr T;Krauss G .The Effect of Structure on the Deforma- tion of as-Quenched and Tempered Martensite in an Fe0.2pet C Alloy[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1976,7A(01):41.
[8] Morito S;Yoshida H;Maki T et al.Effect of Block Size on the Strength of Lath Martensite in Low Carbon Steels[J].Materials Science and Engineering A,2006,438-440(25):237.
[9] 王春芳,王毛球,时捷,惠卫军,董瀚.低碳马氏体钢的微观组织及其对强度的影响[J].钢铁,2007(11):57-60.
[10] 古原忠.钢中马氏体和贝氏体基体组织的特征[J].热处理,2009(02):16-21.
[11] S. MORITO;J. NISHIKAWA;T. MAKI .Dislocation Density within Lath Martensite in Fe-C and Fe-Ni Alloys[J].ISIJ International,2003(9):1475-1477.
[12] Krauss G;Matlock D K.Effect of Strain Hardening and Fine Structure on Strength and Toughness of Tempered Martens- ite in Carbon Steels[J].Journal De Physique,1995(05):51.
[13] 刘军利,林晓娉,李日,俱英翠,刘宏伟.碳对马氏体钢显微组织和力学性能的影响[J].热加工工艺,2006(24):34-36.
[14] 张慧杰,李鸿美,项金钟,包耀宗.高强度超低碳马氏体钢的强化机理[J].上海金属,2010(02):42-45.
[15] 雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006
[16] Speich G R;Leslie W C .Tempering of Steel[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1972,3(05):1043.
[17] C. Garcia-mateo;F. G. caballero .Ultra-high-strength bainitic steels[J].ISIJ International,2005(11):1736-1740.
[18] Kengo TAKEDA;Nobuo NAKADA;Toshihiro TSUCHIYAMA .Effect of Interstitial Elements on Hall-Petch Coefficient of Ferritic Iron[J].ISIJ International,2008(8):1122-1125.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%