欢迎登录材料期刊网

材料期刊网

高级检索

以某公司的富氧底吹熔池熔炼炉为原型,运用数值模拟的方法对炉内氧气-铜锍两相流动进行三维瞬态模拟,研究炉内气泡主要参数、气含率分布规律、氧枪出口附近压力变化以及液面波动情况.并借助于高速摄像仪设备,对水模型实验中气泡形成、合并、变形及破碎过程进行研究,所得结果与模拟结果进行比较.结果表明:所建立的数学模型是合理的.氧气铜锍两相流动模拟结果表明,炉内气泡形成时间为0.12,~0.25 s,生成频率为4~5 Hz,其短轴大小集中在3.5d~6.5d(d为氧枪直径尺寸):气泡停留时间为0.2~0.4 s,其在熔池内的平均上浮速度约为4 m/s;7°和22°氧枪出口气泡后座现象出现的平均频率分别为5Hz和7Hz,作用时间为0.06 s;高效反应区存在于熔池上部区域;气相搅动液相所形成的表面重力波在沉淀区传播的过程中,波幅衰减很快,当波传播到出渣口附近时,液面趋于静止.

参考文献

[1] Par G. Jonsson;Lage T.I. Jonsson .The Use of Fundamental Process Models in Studying Ladle Refining Operations[J].ISIJ International,2001(11):1289-1302.
[2] 詹树华,赖朝斌,萧泽强.侧吹金属熔池内的搅动现象[J].中南工业大学学报(自然科学版),2003(02):148-151.
[3] LAPIN A .Numerical simulation of the dynamics of two-phase flow in bubble columns[J].Chemical Engineering Science,1994,49(21):3661-3674.
[4] SOKOLIEHIN A;EIGENBERGER G;LAPIN A .Dynamical numerical simulation of gas-liquid two-phase flows[J].Chemical Engineering Science,1997,52(09):611-626.
[5] TORVIKR;SVENDSEN H F .Modeling of slurry reactors:A fundamental approach[J].Chemical Engineering Scienee,1990,45(06):2325-2336.
[6] JAKOBSEN H A;SVENDSEN H F;HLJARBO K W .On the prediction of local flow structures in internal loop and bubble column reactors using a two fluid model[J].Chemical Engineering Science,1993,17(05):5531-5536.
[7] Hugo A.Jakobsen;Bente H.Sannaes;Svere Grevskott .Modeling of vertical bubble-driven flows[J].Industrial & Engineering Chemistry Research,1997(10):4052-4074.
[8] NABAVI M;SIDDIQUI K;CHISHTY W A.3-D simulations of the bubble formation from a submerged orifice in liquid cross-flow[A].New York:American Society of Mechanical Engineers,2009:863-869.
[9] FARHANQI M M;PASSANDIDEH-FARD M;BAQHERIAN B.Bubble rise and departure from a viscous liquid free surface[A].New York:American Society of Mechanical Engineers,2009:1893-1900.
[10] LIU Hong;XIE Mao-zhao;YIN Hong-chao;WANG De-qing.VOF simulations of gas bubbles motion in a reciprocally stirred flow[A].Zurich:Trans Tech Publications,2010:2494-2498.
[11] Wang, X.;Dong, H.;Zhang, X.;Yu, L.;Zhang, S.;Xu, Y. .Numerical simulation of single bubble motion in ionic liquids[J].Chemical Engineering Science,2010(22):6036-6047.
[12] 武小龙,吴恩华.气泡的生成和多种流体的模拟[J].计算机辅助设计与图形学学报,2010(09):1463-1467.
[13] HAN WANG;ZHEN-YU ZHANG;YONG-MING YANG;HUI-SHENG ZHANG .NUMERICAL INVESTIGATION OF THE INTERACTION MECHANISM OF TWO BUBBLES[J].International Journal of Modern Physics, C. Physics and Computers,2010(1):33-49.
[14] 潘良明,张文志,陈德奇,许建辉,徐建军,黄彦平.附加惯性力对气泡破裂的影响[J].核动力工程,2011(04):37-41.
[15] CHEN Wen-yi;WANG Jing-bo;JIANG Nan;ZHAO Bin WANG Zhen-dong .Numerical simulation of gas-liquid two-phase jet flow in air-bubble generator[J].长沙:中南工业大学,2009,15(01):140-144.
[16] HASSAN N M S;KHAN M M K;RASUL M G;SUBASCHANDAR N.Modeling of air bubble rising in water and polymeric solution[A].New York:American Institute of Physics,2010:758-768.
[17] Carlos A. LLANOS;Saul GARCIA-HERNANDEZ;J. Angel RAMOS-BANDERAS .Multiphase Modeling of the Fluidynamics of Bottom Argon Bubbling during Ladle Operations[J].ISIJ International,2010(3):396-402.
[18] Rabha, S.S.;Buwa, V.V. .Volume-of-fluid (VOF) simulations of rise of single/multiple bubbles in sheared liquids[J].Chemical Engineering Science,2010(1):527-537.
[19] Nurul Hasan;Zalinawati binti Zakaria .Computational approach for a pair of bubble coalescence process[J].International journal of heat and fluid flow,2011(3):755-761.
[20] XU Ling-jun;CHEN Gang;SHAG Jian-bin;XUE Yang.Numerical simulation of bubble behavior using VOF method[A].Piscataway(NJ):IEEE,2011:2408-2411.
[21] LIU He-ping;QI Zhen-ya;XU Mian-guang .Numerical simulation of flow and interfacial behavior in three-phase argon-stirred ladles with one plug and dual plugs[J].Steel Rearch International,2011,82(04):440-458.
[22] WANG Han,ZHANG Zhen-yu,YANG Yong-ming,ZHANG Hui-sheng.SURFACE TENSION EFFECTS ON THE BEHAVIOR OF TWO RISING BUBBLES[J].水动力学研究与进展B辑,2011(02):135-144.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%