欢迎登录材料期刊网

材料期刊网

高级检索

综述了近年来纳米隔热涂料的研究进展,以及纳米热障涂层、纳米半导体隔热涂料、纳米孔隔热涂料的特点和研究现状,介绍了纳米材料对于降低涂料热导率方面的作用以及一些新型纳米材料在隔热涂料研制中的应用状况,并对目前纳米隔热涂料制备中存在的一些问题和困难进行探讨总结.

参考文献

[1] 童忠良.纳米功能涂料[M].北京:化学工业出版社,2009
[2] 徐云龙;赵崇军;钱秀珍.纳米材料学概论[M].上海:华东理工大学出版社,2008
[3] 洪晓.纳米材料在透明隔热涂料中的应用[J].上海涂料,2008(04):30-32.
[4] Wang, L.;Wang, Y.;Sun, X.G.;He, J.Q.;Pan, Z.Y.;Wang, C.H. .Microstructure and indentation mechanical properties of plasma sprayed nano-bimodal and conventional ZrO _2-8wt%Y _2O _3 thermal barrier coatings[J].Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology,2012(8):1174-1185.
[5] SUN J;ZHANG L L;ZHAO D .Microstrncture and thermal cycling behavior of nanostructured yttria partially stabilized zirconia (YSZ) thermal barrier coatings[J].Journal of Rare Earths,2010,28(Supplement 1):198-201.
[6] Y. Bai;Z.H. Han;H.Q. Li;C. Xu;Y.L Xu;Z. Wang;C.H. Ding;J.F. Yang .High performance nanostructured ZrO2 based thermal barrier coatings deposited by high efficiency supersonic plasma spraying[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2011(16):7210-7216.
[7] Lima RS;Marple BR .Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):182-193.
[8] 周斌,王全胜,柳彦博,马壮.纳米氧化锆涂层晶粒度与隔热性能的关系[J].材料保护,2006(03):1-3.
[9] Zhang CX;Zhou CG;Peng H;Gong SK;Xu HB .Influence of thermal shock on insulation effect of nano-multilayer thermal barrier coatings[J].Surface & Coatings Technology,2007(14):6340-6344.
[10] Hossein Jamali;Reza Mozafarinia;Reza Shoja Razavi .Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings[J].CERAMICS INTERNATIONAL,2012(8):6705-6712.
[11] Lei Jin;Liyong Ni;Qinghe Yu .Thermal cyclic life and failure mechanism of nanostructured 13 wt%Al_2O_3 doped YSZ coating prepared by atmospheric plasma spraying[J].CERAMICS INTERNATIONAL,2012(4):2983-2989.
[12] Dhoke, SK;Bhandari, R;Khanna, AS .Effect of nano-ZnO addition on the silicone-modified alkyd-based waterborne coatings on its mechanical and heat-resistance properties[J].Progress in Organic Coatings,2009(1):39-46.
[13] 姚晨,赵石林,缪国元.纳米透明隔热涂料的特性与应用[J].涂料工业,2007(01):29-32.
[14] 龚圣,廖列文.纳米锑掺杂氧化锡(ATO)的研究及其在透明隔热涂料中的应用[J].广东化工,2011(07):67-68.
[15] 黄旭珊,潘亚美,吕维忠,罗仲宽.影响纳米ITO透明隔热涂料性能的因素[J].涂料工业,2010(08):33-35,42.
[16] 孙国亮,郑文伟.Sb掺杂量对ATO半导体颜料涂层光学性能的影响[J].新技术新工艺,2010(06):80-82.
[17] Mei, S.-G.;Ma, W.-J.;Zhang, G.-L.;Wang, J.-L.;Yang, J.-H.;Li, Y.-Q. .Transparent ATO/epoxy nanocomposite coating with excellent thermal insulation property[J].Micro & nano letters,2012(1):12-14.
[18] Yuan-Qing Li;Yong Kang;Hong-Mei Xiao;Shi-Gang Mei;Guang-Lei Zhang;Shao-Yun Fu .Preparation and characterization of transparent Al doped ZnO/epoxy composite as thermal-insulating coating[J].Composites, Part B. Engineering,2011(8):2176-2180.
[19] J.L Zhao;X.W. Sun;H. Ryu;Y.B. Moon .Thermally stable transparent conducting and highly infrared reflective Ga-doped ZnO thin films by metal organic chemical vapor deposition[J].Optical materials,2011(6):768-772.
[20] 陈中华,王玉琼,苏国徽,童剑.纳米浆料对水性防腐隔热涂料性能影响的研究[J].化工新型材料,2010(02):108-110.
[21] WANG Z J;LIU J;WANG F J et al.A facial one-pot route synthesis and characterization of Y-stabilized Sb2O3 Solar reflective thermal insulating coatings[J].Materials Chemistry and Physics,2011,130(1-2):466-470.
[22] 张欣欣,乐恺,刘育松,王戈,倪文.二氧化硅气凝胶的等效热导率理论[J].宇航材料工艺,2010(02):15-19,23.
[23] 魏高升,张欣欣,于帆.超级绝热材料气凝胶的纳米孔结构与有效导热系数[J].热科学与技术,2005(02):107-112.
[24] 卢斌,郭迪,卢峰.SiO2气凝胶透明隔热涂料的研制[J].涂料工业,2012(06):15-18.
[25] 王慧 .SiO2气凝胶/苯丙原位复合乳液的制备及其在隔热涂料中的应用[D].广东:广东工业大学,2011.
[26] 刘红霞,陈松,贾铭琳,唐帆.疏水SiO2气凝胶的常压制备及在建筑隔热涂料中的应用[J].涂料工业,2011(08):64-67.
[27] 李雄威,段远源,王晓东.SiO2气凝胶高温结构变化及其对隔热性能的影响[J].热科学与技术,2011(03):189-193.
[28] 徐子颉,吕泽霖,甘礼华,郝志显,陈龙武.SiO2气凝胶小球热处理过程中的相变研究[J].人工晶体学报,2006(06):1176-1179.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%