欢迎登录材料期刊网

材料期刊网

高级检索

综述了目前钢铁材料的各种晶粒细化方法、原理及其研究动态,展望了钢铁材料晶粒细化技术的研究前景,以期对新一代钢铁材料的研究和开发提供理论指导.分析认为今后钢铁晶粒超细化技术的研究方向主要有2个方面:一是继续深入讨论和探索晶粒超细化机理以及超细晶粒材料结构与性能的关系;二是开发适宜于工业化生产的钢铁晶粒超细化技术.

The grain refinement methods, its principles and its present research development are summarized,and the prospect of the iron and steels grain refinement technique is also forecasted. The purpose of the present work is to afford theoretical guideline for the research and development of the new generation iron and steel materials. It's believed that the following research directions may be the future exploring directions of the iron and steel materials grain refinement: one is to investigate the grain refinement mechanisms and the relationship between the properties and the microstructures of the ultrafine-grained materials, and the other is to develop new grain refinement technique that could be industrially applied.

参考文献

[1] Eghbali B;Abdollah-zadeh A .Strain-induced transformation in a low carbon microalloyed steel during hot compression test[J].Scripta Materialia,2006,54(06):1205.
[2] Branislav Hadzima;Milos Janecek;Yuri Estrin;Hyoung Seop Kim .Microstructure and corrosion properties of ultrafine-grained interstitial free steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1-2):243-247.
[3] M. Okayasu;K. Sato;M. Mizuno;D. Y. Hwang;D. H. Shin .Fatigue properties of ultra-fine grained dual phase ferrite/martensite low carbon steel[J].International Journal of Fatigue,2008(8):1358-1365.
[4] Song R;Ponge D;Raabe D;Kaspar R .Microstructure and crystallographic texture of an ultrafine grained C-Mn steel and their evolution during warm deformation and annealing[J].Acta materialia,2005(3):845-858.
[5] Ueji R;Fujii H;Cui L;Nishioka A;Kunishige K;Nogi K .Friction stir welding of ultrafine grained plain low-carbon steel formed by the martensite process[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1-2):324-330.
[6] Ming-Chun Zhao;Toshihiro Hanamura;Hai Qiu .Grain Growth and Hall-Petch Relation in Dual-Sized Ferrite/Cementite Steel with Nano-Sized Cementite Particles in a Heterogeneous and Dense Distribution[J].Scripta materialia,2006(6):1193-1197.
[7] O.Bouaziz;S.Allain;C.Scott .Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels[J].Scripta materialia,2008(6):484-487.
[8] 林武,张希旺,赵延阔,李红英.Q345钢奥氏体连续冷却转变曲线(CCT图)[J].材料科学与工艺,2009(02):247-250.
[9] 夏政海,吴清明.微合金元素Ti对20CrMnTi齿轮钢质量的影响[J].特殊钢,2008(04):45-46.
[10] 陈永利,罗登,陈炳张,董立国,朱伏先.新型细晶强化Q460级宽厚板的TMCP工艺研究[J].武汉科技大学学报(自然科学版),2009(02):142-145.
[11] 宁保群,刘永长,徐荣雷,杨留栓.形变热处理对T91钢组织和性能的影响[J].材料研究学报,2008(02):191-196.
[12] 李江 .钢铁材料的晶粒细化研究[J].钢铁技术,2007,45(02):29.
[13] 杨钢,冯光宏.稳恒磁场对低碳锰铌钢γ→α相变的影响[J].钢铁研究学报,2000(05):31-35.
[14] 冯光宏,谢建新.磁场处理对微合金钢相变过程的影响[J].北京科技大学学报,2001(03):262-264.
[15] Umemoto M et al.Nanostructured Fe-C alloys produced by ball milling[J].Scripta Materialia,2001,44(8-9):1741.
[16] 何航;倪红卫;李光强 .高能球磨制备430L不锈钢纳米晶粉末[J].钢铁研究学报,2008,20(04):1.
[17] 牧 正志.细化钢铁材料晶粒的原理与方法[J].热处理,2006(01):1-9,14.
[18] Lu K .Interracial.structural characteristics and grain size limits in nanocrystalline materials crystallization from amorphous solids[J].Physical Review B:Condensed Matter,1995,51(01):18.
[19] Botta W J;Triveno Rios C;Sd Lisboa R D .Crystallisation behaviours of Al-based metallic glasses:Compositional and topological aspects[J].Journal of Alloys and Compounds,2009,483(1-2):89.
[20] Valley R Z;Korasilnikov N A .Plastic deformationof alloys with submicro-grained structure[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1991,137(1-2):35.
[21] Nikolay A. Krasilnikov;A. Sharafutdiniv .High strength and ductility of nanostructured Al-based alloy, prepared by high-pressure technique[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1/2):74-77.
[22] W. Xu;X. Wu;M. Calin .Formation of an ultrafine-grained structure during equal-channel angular pressing of a beta-titanium alloy with low phase stability[J].Scripta materialia,2009(11):1012-1015.
[23] S. Qu;X.H. An;H.J. Yang .Micro structural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing[J].Acta materialia,2009(5):1586-1601.
[24] Terence G. Langdon .The principles of grain refinement in equal-channel angular pressing[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1-2):3-11.
[25] Byoungchul Hwang;Sunghak Lee;Yong Chan Kim .Microstructural development of adiabatic shear bands in ultra-fine-grained low-carbon steels fabricated by equal channel angular pressing[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):308-320.
[26] Hebesberger T;Stuwe H P et al.Strusture of Cu deformed by high pressure torsion[J].ACTA MATERIALIA,2005,53(02):393.
[27] Estrin Y;Molotnikov A;Davies CHJ;Lapovok R .Strain gradient plasticity modelling of high-pressure torsion[J].Journal of the Mechanics and Physics of Solids,2008(4):1186-1202.
[28] L.S. Toth;M. Arzaghi;J.J. Fundenberger .Severe plastic deformation of metals by high-pressure tube twisting[J].Scripta materialia,2009(3):175-177.
[29] Kusadome Y;Ikeda K;Nakamori Y .Hydrogen storage capability of MgNi_2 processed by high pressure torsion[J].Scripta Materialia,2007,57(08):751.
[30] Tsuji N;Saito Y;Utsnnomiya H .Ultra-fine grained bulk steel produced by accumulative roll bonding process[J].Scripta Materialia,1999,40(07):795.
[31] del Valle J A;Perez-Prado M T;Ruano O A .Accumulative roll bonding of a Mg-hased AZ61 alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2005,410-411(25):353.
[32] N. Kamikawa;T. Sakai;N. Tsuji .Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel[J].Acta materialia,2007(17):5873-5888.
[33] Guo Q;Yan H G;Chen Z H et al.Grain refinement in as cast AZS0 Mg alloy under large strain deformation[J].Materials Characterization,2007,58(02):162.
[34] A. Kundu;R. Kapoor;R. Tewari .Severe plastic deformation of copper using multiple compression in a channel die[J].Scripta materialia,2008(3):235-238.
[35] Han Baojun;Xu Zhou .Microstruetural evolution of Fe-32% Ni alloy during large strain multi-axial forging[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2007,447(1-2):119.
[36] Han Baojun;Xu Zhou .Grain refinement under multi-axial forging in Fe-32%Ni alloy[J].Journal of Alloys and Compounds,2008,457(1-2):279.
[37] Belyakov A;Tsuzaki K;Kimura Y .Comparative study on microstructure evolution upon unidirectional and multidirectional cold working in an Fe-15%Cr ferritic alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2007,456(1-2):323.
[38] Han Baojun;Xu Zhou .Martensitic transformation behavior of large strain deformed Fe-32%Ni alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,431(1-2):109.
[39] B. J. Han;Z. Xu .Grain refinement mechanism of Fe-32Ni alloys during multiaxial forging[J].Materials Science and Technology: MST: A publication of the Institute of Metals,2006(11):1359-1363.
[40] Han Baojun;Xu Zhou .Martensite microstructure transformed from ultra-fine grained Fe-32%Ni alloy austenite[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2008,487(1-2):64.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%