欢迎登录材料期刊网

材料期刊网

高级检索

采用砂型铸造方法,制备了不同Fe含量的ZCuSn3Zn8Pb6Ni1FeCo合金.利用光学显微镜、拉伸测验、SEM和EDS能谱等分析测试手段,研究Fe含量对合金组织与性能的影响.结果表明:合金组织以α{Cu,Sn,Zn}为基体,并存在硬脆相δ-Cu_(10)Sn_3,铅以单质形式析出;强化析出相主要有α-Fe和γ-Fe,以及CoCu_2Sn、Fe_3Co_7、Fe_Zn_9等;强化机制符合Orowan机制;当铁含量为1wt%时.以细小弥散颗粒状析出为主(平均直径5-15nm),抗拉强度和伸长率分别为350MPa和12.5%;随着铁含量的增加,除细小弥散析出外,较大颗粒状和粗大颗粒析出数量增多,析出物平均直径增大,综合力学性能指标大幅下降;当铁含量为4wt%时,析出颗粒尺寸达到4~10μm,晶界富集粗大析出相,伸长率下降到5%.

ZCuSn3Zn8Pb6Ni1FeCo alloy samples with different amount of Fe were prepared by sand casting.The effect of Fe content on properties and microstucture of the alloy was investigated by means of optical microscope, SEM, EDS analysis and tensile test. The results show that the microstructure of the alloy consists of matrix α-{Cu,Sn,Zn}, precipitates of α-Fe,γ-Fe,CoCu2Sn,Fe3CoT, Fe4Zn9, brittle phase δ-Cu10Sn3 ,and Pb particles. The strengthening mechanism obeys Orowan mechanism. Fine precipitates of 5 ~ 15nm dispersively distributed in the alloy with 1wt%Fe is observed and its tensile strength and elongation are 350MPa and 12.5% respectively. With increase of Fe content, the precipitates coarsens, as a result, the comprehensive mechanical property deteriorates. When Fe content reaches to 4wt%, the precipitates increase to 4~10μm, elogation of the alloy decreases to 5%.

参考文献

[1] Motohisa M .Development trends in new copper alloy for lead frame[J].Journal of the Japan Copper and Brass Research Association,1990,29:18-21.
[2] 戴姣燕,尹志民,宋练鹏,张生龙,李雪,孙伟.形变热处理对用微量Cr合金化的Cu-Zn合金组织性能的影响[J].中国有色金属学报,2006(06):982-988.
[3] 李宏磊.Cu-3.2Ni-0.75Si合金的时效析出强化效应分析[J].中南大学学报(自然科学版),2006(03):467-471.
[4] 刘平,顾海澄,曹兴国.铜基集成电路引线框架材料的发展概况[J].材料开发与应用,1998(03):37.
[5] 李智诚;薛剑峰;朱中平.电子元器件新型有色金属材料的生产和应用[M].南京:江苏科学技术出版社,1991
[6] 宫藤久元 .Technical trends of copper alloys for electronic uses[J].神户制钢技报(日本),1988,38:47-50.
[7] M. Aksoy;V. Kuzucu;H. Turhan .A note on the effect of phosphorus on the microstructure and mechanical properties of leaded-tin bronze[J].Journal of Materials Processing Technology,2002(1/2):113-119.
[8] Takao H .Performance of EFrEC-64TC alloy in high-strength and high-conductivity for lead-frame[J].Journal of the Japan Copper and Brass Research Asseciatation,1997,36:87-93.
[9] 赵冬梅,董企铭,刘平,金志浩,康布熙.高强高导铜合金合金化机理[J].中国有色金属学报,2001(z2):21-24.
[10] 曹育文.引线框架用高强高导铜合金[M].北京:清华大学出版社,1999
[11] 王强松;王自东;谢建新 等.一种耐高压铸造铜合金[P].中国,2007-10-29.
[12] Brooks C R.Heat Treatment,Structure and Properties of Nonferrous Alloys[M].American Seciety of Metals,Cleveland,OH,1990:275.
[13] Smallman R E.Modem Physical Metallurgy[M].London:Bntterworths,1985
[14] 刘志义,李云涛,刘延斌,夏卿坤.Al-Cu-Mg-Ag合金析出相的研究进展[J].中国有色金属学报,2007(12):1905-1915.
[15] 余永宁.材料科学基础[M].北京:高等教育出版社,2006
[16] Gerald V.Dislocations in Solids[M].New York:North-Holland,1979:220-230.
[17] Orowan E .Symposium on internal stresses in metals and alloys[J].NATURE,1949,164:296.
[18] 贾淑果,刘平,田保红,郑茂盛,周根树,娄花芬.高强高导Cu-0.1Ag-0.11Cr合金的强化机制[J].中国有色金属学报,2004(07):1144-1148.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%