欢迎登录材料期刊网

材料期刊网

高级检索

通过引入适当的Westergaard应力函数,采用复变函数方法和待定系数法对含周期性裂纹正交各向异性纤维增强复合材料板的Ⅰ型、Ⅱ型问题中裂纹尖端附近的应力场进行了力学分析.在远处对称载荷与斜对称载荷作用下,先给出Ⅰ型、Ⅱ型问题在裂纹尖端处的应力强度因子,然后导出用应力强度因子表示的Ⅰ型、Ⅱ型裂纹问题应力场的解析表达式.此外,应力场大小与材料常数有关,这是正交各向异性材料不同于各向同性材料的特征.由于裂纹的周期分布,应力强度因子的大小取决于形状因子.结果表明,形状因子随着裂纹长度的增加而增大,随着裂纹间距的增大而逐渐下降,当裂纹间距趋于无穷大时,退化为含单个中心裂纹正交各向异性纤维增强复合材料板的结果.

By introducing proper Westergaard's stress function, the stress fields for mode Ⅰ and Ⅱ problems of periodic cracks in orthotropic composites were analyzed using the complex variable function method and approach of undetermined coefficients. Firstly, the stress intensity factors (SIFs) at the crack tip for mode Ⅰ and Ⅱ problems were presented under symmetrical loadings and skew-symmetrical loadings at infinity. The analytic expressions of the stress fields are then induced by the SIFs. In addition, the stress fields are related to the material constants, which is the characteristic of orthotropic materials different from the isotropic materials. Due to the distribution of periodic cracks in an orthotropic plate, the SIFs are determined by the shape factor. The results show that the shape factor increases as the crack length becomes longer, but decreases as the crack spacing becomes larger. Especially, the present result can reduce to the ease of the central crack in an orthotropic plate when the crack spacing tends to infinity.

参考文献

[1] 张少琴,杨维阳,张克颢.复合材料的z断裂准则及专家系统[M].北京:科学出版社,2003.
[2] Corten H T.Fracture mechanics of composite (Vol 7)[M].New York:Academic Press,1972.
[3] Sih G C,Chen E P.Cracks in composite materials (Vol 6)[M].Hague:Martinus Nijhoff Publishers,1981.
[4] 杨维阳,李俊林,张雪霞.复合材料断裂复变方法[M].北京:科学出版社,2005.
[5] Nobile L,Piva A,Viola E.On the inclined crack problem in an orthotropic medium under biaxial loading[J].Engineering Fracture Mechanics,2004,71(4-6),29-546.
[6] 刘又文,蒋持平.两种各向异性材料界面周期裂纹的反平面问题[J].固体力学学报,1996,17(2):140-144.Liu Youwen,Jiang Chiping.Antiplane problems of collinear periodical cracks between dissimilar anisotropie materials[J].Acta Mechanica Solida Sinica,1996,17(2):140-144.
[7] 胡卫华,吕运冰.周期性Ⅰ-Ⅱ复合型裂纹的应力强度因子[J].武汉理工大学学报,2002,26(1):123-125.Hu Weihua,Lü Yunbing.Stress intensity factors of periodic mixed crackle Ⅰ-Ⅱ[J].Journal of Wuhan University of Technology,2002,26(1),123-125.
[8] Chen Y Z,Lee K Y.An infinite plate weakened by periodic cracks[J].ASME J Appl Mech,2002,69(4):552-555.
[9] Tada H,Paris P C,Irwin G R.The stress analysis of cracks handbook[M].Hellertown,Pennsylvania,Del Research Corporation,1973.
[10] Wijeyewickrema A C,Keer L M.Matrix crack interaction in a fiber-reinforced brittle matrix composite[J].Int J Solid Strut,1992,29(5):559-570.
[11] Kaw A K,Besterfield G H.Mechanics of multiple periodic brittle matrix cracks in unidirectional fiber-reinforced composites[J].Int J Solid Strut,1992,29 (10),1193-1207.
[12] 路见可.关于周期应力平面弹性基本问题[J].力学学报,1964,7(4):316-327.Lu Chienke.On fundamental problems of plane elasticity with periodic stresses[J].Acta Mechanica Sinica,1964,7(4),316-327.
[13] Cai H T.A periodic array of cracks in an infinite anisotropic medium[J].Eng Frac Mech,1993,46(1):133-142.
[14] 肖俊华.非均匀相双周期排列材料的细观力学研究[D].北京:北京航空航天大学,2008:62-76.
[15] 肖俊华,谢新亮,徐耀玲,蒋持平.双周期涂层纤维增强复合材料反平面剪切问题[J].复合材料学报,2008,25(3):168-173.Xiao Junhua,Xie Xinliang,Xu Yaoling,Jiang Chiping.Problem of doubly periodic coated fiber reinforced composites under antiplane shear[J].Acta Materiae Compositae Sinica,2008,25(3),168-173.
[16] Hearmon R F S.Applied anisotropic elasticity[M].London:Oxford University Press,1961.
[17] Sih G C,Liebowitz H.Mathematical theories of brittle fracture (Vol 7)[M].New York:Academic Press,1968.
[18] 徐秉业,黄炎,刘信声,孙学伟.弹性力学与塑性力学解题指导及习题集[M].北京:高等教育出版社,1999:417-441.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%