欢迎登录材料期刊网

材料期刊网

高级检索

碳/玻纤间隔织物是一种新型结构的纤维增强材料,其纤维与树脂的结合牢度是决定其复合材料性能的主要因素。为了进一步改善碳纤维和玻璃纤维与树脂的界面结合性能,本文采用不同功率的常压低温等离子技术对整体中空织物进行处理,然后通过扫描电镜、吸光率表征、玻纤单丝微脱粘测试以及碳纤维复丝拉伸性能测试等对织物中的碳纤维与玻璃纤维进行表征。研究结果表明,经过等离子处理后,混杂织物中的面层和芯材均受到等离子体刻蚀,纤维表面的官能团增多,纤维浸润性界面结合性能得到改善。同时,研究结果还表明,等离子处理碳/玻间隔织物的改性效果随着功率的增加是先增加后降低,在功率为150w的常压低温等离子处理的效果最佳。

Carbon/glass hybrid integral hollow fabrics, as a novel kind of fiber reinforced material, have attracted much more attention in the fiber/resin composites and the properties of the corresponding composites greatly depend on the interracial performance between the fiber and resin. In order to improve the interracial performance of carbon/glass hybrid integral hollow fabric, the atmospheric low-temperature plasma technology under different powers were used to treat the hollow fabric. Scanning electron microscopy, the absorption rate characterization, glass fiber monofilament micro-debonding test and tensile tests on the carbon fiber fabric and glass fiber were used to characterize the treated fabrics. The results showed that, after plasma treatment, the entire fabric surfaces were etching, and the functional groups on both carbon fiber and glass fiber surfaces increased, which resulted the fiber invasive interface bonding performance to be improved. The results also showed that the modified effects of plasma treatments on the carbon/glass fiber hybrid integral hollow fabric increased at first and then decreased with increasing the power, and the optimum power is 150 W.

参考文献

[1] 樊萍,晏雄.混杂纤维复合材料的研究进展[J].纺织科技进展,2008(01):20-22.
[2] Shan Y;Liao K .Environmental fatigue of unidirectional glass-carbon fiber reinforced hybrid eomposite[J].Composites Part B:Engineering,2001,23(04):355-363.
[3] 郭伟凯 .碳纤维排布方式对结构吸波材料吸波性能的影响及其机理分析[D].天津大学,2004.
[4] 赵士贵;袭建人 .碳纤维/玻璃纤维混杂复合材料性能研究[J].工程塑料应用,1999,27(12):lO-11.
[5] T. Czigany .Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study[J].Composites science and technology,2006(16):3210-3220.
[6] 高爱君,李敏,王绍凯,张佐光.三维间隔连体织物复合材料力学性能[J].复合材料学报,2008(02):87-93.
[7] 曹海建,钱坤,魏取福,李鸿顺.三维整体中空复合材料低速冲击性能[J].纺织学报,2009(10):70-74.
[8] van Vuure A. W;Ivens J. A;Verpoest I .Mechanical properties of composite panels based on woven sandwich fabric performs[J].Composites Part A:Applied Science and Manufacturing,2000,31:671-680.
[9] Leej S;Drzal T .Surface characterization and adhesion of carbon fibers to epoxy and polycarbonate[J].International Journal of Adhesion and Adhesives,2005,25(05):389-394.
[10] 邵友林,王伯羲.碳纤维的表面除胶及表征[J].复合材料学报,2002(04):29-32.
[11] 李志军,程光旭,韦玮.等离子体处理在玻璃纤维增强聚丙烯复合材料中的应用[J].中国塑料,2000(06):45-49.
[12] 王善元;张汝光.纤维增强复合材料[M].上海:中国纺织大学出版社,1998:72-79,94-95,96-97.
[13] 冼杏娟;李端义.复合材料破坏分析及微观图谱[M].北京:科学出版社,1993:47.
[14] 王彧婕 .介质阻挡放电等离子体改性芳纶纤维的界面性质的研究[D].四川大学,2007.
[15] 彭静;张军 等.等离子体技术在CF/树脂基复合材料中的应用[J].材料导报,1999,13(02):48-50.
[16] 郑安呐;吴叙勤 等.碳纤维表面等离子处理及其效果的研究[J].石油炼制与化工,1996,27(05):60-68.
[17] 杨建生.纤维和纺织品的表面性能(下)[M].北京:纺织工业出版社,1982:132-167.
[18] 王德生;任重远.离子体处理改性玻璃纤维表面[J].玻璃纤维,1989(03):13-15.
[19] 王善元;张汝光.纤维增强复合材料[M].上海:中国纺织大学出版社,1998:72-79,94-95,96-97.
[20] Robert.N.Wenzel .Surface Roughness and Contact Angle[J].Journal of Physical Chemistry,1949,53(09):1466-1467.
[21] 贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2005
[22] 李学梅 .玻璃纤维/环氧复合材料界面性能研究[D].武汉理工大学,2004.
[23] GB/T3362-2005.碳纤维复丝拉伸性能试验方法[S].北京:中国标准出版社,2005.
[24] 赵士贵;袭建人 .碳纤维/玻璃纤维混杂复合材料性能研究[J].工程塑料应用,1999,27(12):10-11.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%