欢迎登录材料期刊网

材料期刊网

高级检索

采用Gleeble-1500热模拟试验机对3003铝合金进行变形温度为400℃,应变速率为0.01~10.0 s-1的等温压缩实验,获得热变形过程中的真应力-真应变曲线。结果表明:应变速率ε≥1.0 s-1时,实际变形温度高于预设温度,产生变形热效应。合金发生动态再结晶的临界应变随着应变速率的升高而增加,在较高应变速率条件下(ε≥1.0 s-1),流变应力曲线出现锯齿形波动,合金发生了不连续动态再结晶。利用光学显微镜和透射电镜分析了应变速率对3003铝合金热变形组织演变的影响。结果表明:应变速率越小,合金越容易发生动态再结晶,当应变速率为10.0 s-1时,由于变形热效应的作用,合金也发生了动态再结晶。低应变速率(ε≤0.1 s-1)条件下,提高应变速率可以明显细化晶粒,并且在相同应变下,动态再结晶体积分数随应变速率的增大而减小,综合考虑动态再结晶晶粒的大小和组织均匀性,较佳的应变速率为0.1 s-1。

The isothermal and constant strain rate compression tests of 3003 aluminum alloy were conducted in the strain range of 0.01-10.0 s-1 at 400 ℃ on a Gleeble-1500 thermal simulator.The true stress-true strain curves were obtained in the tests.The results show that the actual deformation temperature of the sample deformed at higher strain rates(≥1.0 s-1) is higher than the preset temperature,resulting in a deformation thermal effect.The critical strain of dynamic recrystallizaion(DRX) increases with strain rate increasing.The serrate flow curves are observed at the higher strain rates(≥1.0 s-1),which indicates that discontinuous dynamic recrystallization(DDRX) occurs.Optical microscope and transmission electron microscopy were employed to analyze the effect of strain rate on the microstructural evolution.The results show that lower strain rates,more easily DRX occurs.Due to the deformation thermal effect,DRX also takes place in the studied alloys at the strain rate of 10.0 s-1.The grain size can be defined obviously with strain rates increasing at the strain rate higher than 0.1 s-1.Recrystallized volume fraction decreases with strain rate increasing at the same strain.Based on the size of DRX grain and uniformity in the microstructure,the strain rate of 0.1 s-1 is preferable to hot working.

参考文献

[1] 杨余良,张安乐,张芳,梁新华.3003合金铸轧板坯冷轧中晶粒组织的控制[J].轻合金加工技术,2008(10):17-19.
[2] 张新明,吴文祥,唐建国,李慧中,周卓平.预析出对冷轧3003铝合金析出行为及再结晶晶粒尺寸的影响[J].中南大学学报(自然科学版),2006(02):212-216.
[3] 陈贵清,傅高升,颜文煅,程超增,邹泽昌.3003铝合金动态再结晶实验研究[J].材料工程,2011(08):77-81.
[4] Mirzadeh H;Najafizadeh A.Prediction of the critical conditions for initiation of dynamic recrystallization[J].Materials & Design,2010(31):1!74-1179.
[5] 蔺永诚,陈明松,钟掘.42CrMo钢亚动态再结晶行为研究[J].材料热处理学报,2009(02):71-75.
[6] 王斌,易丹青,方西亚,刘会群,吴春萍.ZK60镁合金高温动态再结晶行为的研究[J].材料工程,2009(11):45-50.
[7] John J. Jonas;Xavier Quelennec;Lan Jiang .The Avrami kinetics of dynamic recrystallization[J].Acta materialia,2009(9):2748-2756.
[8] 傅高升,陈文哲,钱匡武.高效铝熔体综合处理技术及其效果[J].中国有色金属学报,2002(02):269-274.
[9] Baragar D L .The high temperature and high strain rate behavior of a plain carbon and an HSLA steel[J].Journal of Mechanical Working and Technology,1987,14:295-307.
[10] YUAN H;LIU W C .Effect of the 8 phase on the hot deformation behavior of Inconel 718[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2005,408:281-289.
[11] 黄光杰,程虎.3104铝合金流变应力行为[J].重庆大学学报(自然科学版),2007(01):70-72.
[12] 朱远志;杨扬;杨军军 .高速变形条件下的动态再结晶机制的研究进展[J].铝加工,2000,23(03):43-47.
[13] 董岚枫,钟约先,马庆贤,袁朝龙.20SiMn钢锻造过程动态再结晶行为研究[J].中国机械工程,2008(10):1245-1249.
[14] Bbynon J H;Sellars C M .Modeling microstructure and its effects during multi-pass hot rolling[J].ISIJ International,1992,32(03):359-367.
[15] E.I.POLIAK;J.J.JONAS .A ONE-PARAMETER APPROACH TO DETERMINING THE CRITICAL CONDITIONS FOR THE INITIATION OF DYNAMIC RECRYSTALLIZATION[J].Acta materialia,1996(1):127-136.
[16] 欧阳德来,鲁世强,崔霞,吴超,董显娟.TA15钛合金β热变形中的动态再结晶形核[J].材料热处理学报,2009(06):116-120.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%