欢迎登录材料期刊网

材料期刊网

高级检索

以离子液体氯代1-烯丙基-3-甲基咪唑([AMIM]Cl)为溶剂来纺制纤维素/聚醚砜共混中空纤维膜,考察了聚醚砜含量对中空纤维膜结构与性能的影响。采用扫描电子显微镜(SEM)对膜内、外表面形态结构进行了观察,测试了中空纤维膜的水通量、截留率等渗透性能,最大拉伸强度、断裂伸长率、杨氏模量等力学性能以及透析性能。结果表明:随着聚醚砜含量的增加,中空纤维膜外表面孔洞结构变大,内表面结构变得更加疏松,膜孔隙率与水通量升高,最大拉伸强度、断裂伸长率、杨氏模量等力学性能则逐渐下降;对尿素的清除效率逐渐提升;对溶菌酶和牛血清白蛋白的清除效率逐渐增大,在聚醚砜含量为13%时分别达到最大值24.05%和19.91%。

The cellulose/PES blend hollow fiber membranes were spun using ionic liquid 1-ally- 3methylimidazolium chloride ([AMIM]C1) as solvent. Influence of PES content on the structure and properties of the blend hollow fiber membranes were investigated. The morphologies of the inner- and outer-surfaces of the membranes were studied using scanning electron microscopy (SEM). Furthermore, permeation properties and mechanical properties of the membranes, including water flux, retention rate, ultimate tensile strength (UTS), elongation at break, Younges modulus were also tested. The results indicate that, with the increase of PES content, the pores become larger and the inner surfaces are more irregular. Contrary to increasing porosity and water flux, ultimate tensile strength, elongation at break, Young's modulus show a decreasing tendency. The removal efficiency to urea, lysozyme and bovine serum albumin (BSA) are gradually enhanced, and the removal efficiencies to lysozyme and BSA reache maxima of 24.05% and 19.91%, respectively, when the PES content is 13%.

参考文献

[1] 杜民慧,李建树,赵长生,钟银屏.聚醚砜中空纤维膜对血液中溶质的清除性能[J].四川大学学报(工程科学版),2002(01):69-71.
[2] 王质刚.血液净化学[M].北京:北京科学技术出版社,2003
[3] 张亚琴.[A].上海,2007
[4] Zhang H;Wu J;Zhang J;He JS .1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose[J].Macromolecules,2005(20):8272-8277.
[5] Diego A.Fort;Richard C.Remsing;Richard P.Swatloski .Can ionic liquids dissolve wood?Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride[J].Green chemistry,2007(1):63-69.
[6] 李红剑,李雄岩,贺晓泉,李雪梅,曹义鸣,袁权.凝固条件对α-纤维素中空纤维膜结构和性能的影响[J].高分子学报,2007(03):250-254.
[7] 裴玉新,沈新元,王庆瑞.血液净化用高分子膜的现状及发展[J].膜科学与技术,1998(01):10-13.
[8] Erlenkotter A;Endres P;Nederlof B;Hornig C;Vienken J .Score model for the evaluation of dialysis membrane hemocompatibility.[J].Artificial Organs,2008(12):962-969.
[9] Jacek Waniewski .Mathematical modeling of fluid and solute transport in hemodialysis and peritoneal dialysis[J].Journal of Membrane Science,2006(1/2):24-37.
[10] Mu C et al.Remarkable improvement of the performance of poly (vinylidene fluoride) microfiltration membranes by the additive of cellulose acetate[J].Journal of Membrane Science,2010,350(1-2):293-300.
[11] Ehsan Saljoughi;Toraj Mohammadi .Cellulose acetate (CA)/polyvinylpyrrolidone (PVP) blend asymmetric membranes: Preparation, morphology and performance[J].Desalination: The International Journal on the Science and Technology of Desalting and Water Purification,2009(2):850-854.
[12] Guang Yang;Lina Zhang;Xiaodong Cao;Yonggang Liu .Structure and microporous formation of cellulose/silk fibroin blend membranes Part II. Effect of post-treatment by alkali[J].Journal of Membrane Science,2002(2):379-387.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%