欢迎登录材料期刊网

材料期刊网

高级检索

医用植人体的成功与否常常取决于器件植入后细胞与材料表面间的相互作用.采用生物体外测试法考察了声电化学法制备的磷酸钙涂层对炭织物的骨细胞附着、增殖能力的影响.借助MTS检测技术、扫描电子显微镜,选择人类成骨细胞(MG63)作为细胞模型,通过测定细胞与炭织物、磷酸钙涂覆炭织物、以及其各自的提取液作用后的存活能力,研究了细胞/材料的相互作用,并对基底材料的细胞毒性进行了评价.结果表明,炭织物、磷酸钙涂覆炭织物均不具有细胞毒性,且磷酸钙涂层可提高成骨细胞的附着和增殖.SEM图像显示,细胞形貌正常,与对照组相比较生长增殖情况相似.

The success or failure of medical implants often depends on the cell-surface behavior after implantation of the device. This study investigated the use of woven carbon fabric, which had been sonoelectrochemically coated with calcium phosphate, to enhance bone cell attachment and proliferation in vitro. Human osteoblast-like cells, MG63, were used to study the interactions between cells and the material and assess the cytotoxicity of the substrates. The cytotoxicity of the materials was assessed using an MTS ((3-(4,5-dimethylthiazol-2 -yl ) -5 - ( 3-carboxymethoxyphenyl)-2-(4-sulfo- phenyl)-2H-tetrazolium, inner salt)) assay to determine the viability of the osteoblast-like MG63 cells in direct contact with the carbon fabric or calcium phosphate coated carbon fabrics, and to assess the cytotoxicity of extracts from these materials. The morphology of the surface adherent cells was assessed by scanning electron microscopy (SEM). Results showed that neither carbon fabrics nor calcium phosphate coated materials were cytotoxic. Furthermore, cell attachment and proliferation were enhanced by coating carbon fabrics with calcium phosphate. SEM showed that the cells had a nor- mal morphology and were well spread similar to those seen in the tissue culture plate control. These flexible calcium phosphate coated fabrics could, therefore, have uses in the reconstruction of bone in orthopaedic and dental surgery.

参考文献

[1] Jenkins G M .Biomedical applications of carbons and graphites[J].Clinical Physics & Physiological Measurement,1980,1:171-194.
[2] Kazakov M E;Bizyakina N G;Prokimnov V V et al.Application of carbon materials in traumatology and orthopedics[J].Journal Fibre Chemistry,1989,21:135-137.
[3] Minns R J;Muckle D S;Donkin J E .The repair of osteochondral defects in osteoarthritic rabbit knees by the use of carbon fibre[J].Biomaterials,1982,3:81-86.
[4] Muckle D S;Minns R J .Biological response to woven carbon fibre pads in the knee[J].Journal of Bone and Joint Surgery-British Volume,1989,71-B:60-62.
[5] Blazewicz M .Carbon materials in the treatment of soft and hard tissue injuries[J].European Cells and Materials,2001,2:21-29.
[6] Aichroth P M;Patel D V;Jones C B et al.A combined intra and extra-articular reconstruction using a carbon-dacron composite prosthesis for chronic anterior cruciate instability[J].International Orthopaedics,1991,15:219-227.
[7] Minns R.J;Muckle D S .Mechanical and histological response of carbon fibre pads implanted in the rabbit patella[J].Biomaterials,1989,10:273-276.
[8] Citeau A;Guicheux J;Vinatier C;Layrolle P;Nguyen TP;Pilet P;Daculsi G .In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting.[J].Biomaterials,2005(2):157-165.
[9] Julien M;Khairoun I;LeGeros RZ;Delplace S;Pilet P;Weiss P;Daculsi G;Bouler JM;Guicheux J .Physico-chemical-mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates.[J].Biomaterials,2007(6):956-965.
[10] Pioletti DP;Takei H;Lin T;Van Landuyt-P;Ma QJ;Kwon SY;Sung KL .The effects of calcium phosphate cement particles on osteoblast functions.[J].Biomaterials,2000(11):1103-1114.
[11] van der Wal E;Vredenberg AM;Ter Brugge PJ;Wolke JGC;Jansen JA .The in vitro behavior of as-prepared and pre-immersed RF-sputtered calcium phosphate thin films in a rat bone marrow cell model[J].Biomaterials,2006(8):1333-1340.
[12] 韩红梅,Sergey V.Mikhalovsky,Gary J.Phillips,Andrew W.Lloyd.声电化学法在炭织物表面制备的磷酸钙涂层及其对成骨细胞活性的影响[J].新型炭材料,2007(02):121-125.
[13] Ahmed EI-Ghannam .Bone reconstruction: from bioceramies to tissue engineering[J].Expert review of medical devices,2005(1):87-101.
[14] Balani K;Anderson R;Laha T;Andara M;Tercero J;Crumpler E;Agarwal A .Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro[J].Biomaterials,2007(26):618-624.
[15] Knabe C;Klar F;Fitzner R;Radlanski RJ;Gross U .In vitro investigation of titanium and hydroxyapatite dental implant surfaces using a rat bone marrow stromal cell culture system.[J].Biomaterials,2002(15):3235-3245.
[16] Morrison C.;Macdonald C.;Wykman A.;Goldie I.;Grant MH.;Macnair R. .IN VITRO BIOCOMPATIBILITY TESTING OF POLYMERS FOR ORTHOPAEDIC IMPLANTS USING CULTURED FIBROBLASTS AND OSTEOBLASTS[J].Biomaterials,1995(13):987-992.
[17] Olivares R.;Rodil SE.;Arzate H. .In vitro studies of the biomineralization in amorphous carbon films[J].Surface & Coatings Technology,2004(0):758-764.
[18] Montanaro L;lma.unibo.it;Arciola CR;Campoccia D;Cervellati M .In vitro effects on MG63 osteoblast-like cells following contact with two roughness-differing fluorohydroxyapatite-coated titanium alloys.[J].Biomaterials,2002(17):3651-3659.
[19] Ramires PA;Romito A;Cosentino F;Milella E .The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour.[J].Biomaterials,2001(12):1467-1474.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%