钢铁研究学报(英文版), 2014, 21(4): 444-450.
1.Transportation Equipments and Ocean Engineering College, Dalian Maritime Universit{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"用一步固相法合成了斜方锰酸锂,对其进行了表征并确定了前驱体化合物烧结中的转变过程,以及相互化合间的烧结机制.结果表明,随着煅烧温度的升高,杂相减少,生长出主体相斜方锰酸锂.在700℃以上可以生成均一相的层状斜方类球状和棒状锰酸锂颗粒.两种颗粒的粒度分别为1~5 μm和5~15 μm.在充放电循环中,斜方锰酸锂结构易于向尖晶石结构转变.在2.5~4.5 V范围内以20 mA/g电流进行充放电循环,斜方锰酸锂的初始充电容量达到247 mAh/g,放电容量为133 mAh/g,50次循环后,容量保持率为92%.","authors":[{"authorName":"李义兵","id":"17b68966-10fb-4178-92b3-d98fe911919e","originalAuthorName":"李义兵"},{"authorName":"陈白珍","id":"92ff3a8e-067f-4e93-aa90-7c76feabcaa5","originalAuthorName":"陈白珍"},{"authorName":"李改变","id":"b9f3111b-f690-43a9-a79c-337289761948","originalAuthorName":"李改变"},{"authorName":"金基明","id":"ae5b7d3e-da4a-4627-994e-e2b951292838","originalAuthorName":"金基明"}],"doi":"10.3321/j.issn:1005-3093.2006.01.018","fpage":"83","id":"36458610-cc71-4ea3-8f54-909a0c713a3a","issue":"1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"5e795e61-0e7d-477f-b707-e6d998fcdb30","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"cffbcf57-c065-418a-bd5e-6980520cbcd4","keyword":"斜方锰酸锂","originalKeyword":"斜方锰酸锂"},{"id":"8461b02c-24fe-4dda-ad61-62d064fb7b8e","keyword":"固相法","originalKeyword":"固相法"},{"id":"fc01bc42-a8c6-472c-9cde-c9e4b39ea93f","keyword":"电化学行为","originalKeyword":"电化学行为"}],"language":"zh","publisherId":"clyjxb200601018","title":"锂离子电池斜方锰酸锂阴极材料的合成与表征","volume":"20","year":"2006"},{"abstractinfo":"采用溶胶凝胶法制备层状LiMnO2,并掺杂不同比例的稀土元素进行改性.XRD分析结果表明,掺杂镧元素的层状锰酸锂呈斜方晶系,纯度较高.SEM照片显示这种产物为层状结构,且粒度大小分布较为均匀.用循环充放电测试考察了产物的电化学性能,结果显示掺杂6%La的层状锰酸锂正极材料的初次放电比容量为128 mAh/g,但循环稳定性较差;而掺杂了4%La的层状锰酸锂则表现了良好的循环稳定性,首次放电比容量达到了102 mAh/g,多次充放电之后容量基本没有衰减,仍然能保持较高的比容量.从交流阻抗数据分析,掺镧量为4%的样品扩散阻抗较小,充放电可逆性较好.","authors":[{"authorName":"赵桂网","id":"18830f41-15d2-4de8-afd9-25f71e46e225","originalAuthorName":"赵桂网"},{"authorName":"何建平","id":"4b10992d-423e-48a7-95d9-119fb8a911dd","originalAuthorName":"何建平"},{"authorName":"张传香","id":"8f765e61-a2d0-41b0-b93e-26cd2f22b344","originalAuthorName":"张传香"},{"authorName":"潘科亮","id":"26752ed6-2f4f-4cc5-90bf-17f9ac11533a","originalAuthorName":"潘科亮"},{"authorName":"周建华","id":"72470b65-fea1-4459-b035-6ac3f268d7c3","originalAuthorName":"周建华"}],"doi":"","fpage":"709","id":"08c4b681-73f9-486f-9fad-5319c93dc578","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"924bbf75-4194-4783-952d-fa0ae8ef2315","keyword":"层状LiMnO2","originalKeyword":"层状LiMnO2"},{"id":"fc270ce8-a1e8-4b0e-9cc9-20c5667bc5a6","keyword":"溶胶凝胶法","originalKeyword":"溶胶凝胶法"},{"id":"804cfb13-c66e-4b05-97a1-f7d7ae28dfd7","keyword":"稀土掺杂","originalKeyword":"稀土掺杂"}],"language":"zh","publisherId":"xyjsclygc200804034","title":"稀土镧掺杂层状锰酸锂正极材料的制备与性能","volume":"37","year":"2008"},{"abstractinfo":"分别以自制锰源和工业用电解二氧化锰为原料,采用固相合成法,将锰源和碳酸锂的混合物合成尖晶石型锰酸锂.通过扫描电子显微镜、X射线衍射的方法研究了不同锰源合成的尖晶石型锰酸锂之间形貌和结构的区别,通过电性能测试研究了不同锰酸锂对锂离子电池电性能的影响.结果表明:合成的锰酸锂都有良好的尖晶石型立方结构,以碳酸锰为原料的自制三氧化二锰合成的锰酸锂颗粒细小、致密,颗粒大小分布均匀,首次充放电比容量最高,分别为136.51mAh/g和124.18mAh/g,同时也表现出了最优的循环性能,循环50次的充放电容量分别为103.02mAh/g和91.21mAh/g.","authors":[{"authorName":"邹兴","id":"d7566d27-2127-49ca-9a69-1ecc0435a668","originalAuthorName":"邹兴"},{"authorName":"马莉","id":"ae6ddc77-65d7-4092-8ebe-4189ee532e16","originalAuthorName":"马莉"},{"authorName":"陈贵","id":"e8e4c33e-92f9-4d87-9a36-29ced2cb857e","originalAuthorName":"陈贵"}],"doi":"","fpage":"131","id":"466a3338-cd7a-430c-905a-a6228697a3dc","issue":"5","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"e85409a1-fb84-4175-bd8e-4cdee8f7c20f","keyword":"不同锰源","originalKeyword":"不同锰源"},{"id":"e6bfa389-1cb3-4c97-a279-bb7fe859c4d7","keyword":"固相合成法","originalKeyword":"固相合成法"},{"id":"3b97fe9e-77ec-4574-b4d4-0cd34924469c","keyword":"尖晶石型锰酸锂","originalKeyword":"尖晶石型锰酸锂"},{"id":"1c4289e0-4197-49fe-a9e0-c02c91b52aff","keyword":"电性能","originalKeyword":"电性能"}],"language":"zh","publisherId":"clkxygy201105027","title":"不同锰源对尖晶石型锰酸锂性能影响的研究","volume":"19","year":"2011"},{"abstractinfo":"以电解二氧化锰和碳酸锂为原料用高温固相法合成了尖晶石锰酸锂,在锂与锰的原子比从0.95:2到1.1:2范围内,其结构为单一尖晶石相,晶格常数和比容量随着锂锰比的增加呈现出先增大后降低的变化规律.在锂锰比为1.0:2和1.02:2附近,晶格常数和比容量分别达到最大.这种变化规律与锂离子在晶格中的位置有关.在锂锰比从1.0:2到1.1:2的范围内,随着锂锰比的增加,尖晶石锰酸锂嵌脱锂反应过程的动力学极化逐渐降低,大电流性能逐渐提高.以尖晶石锰酸锂为正极,MCMB为负极组装了423048型电池,锂锰比从1.0:2到1.1:2,电池循环稳定性随锰酸锂的锂锰比的增大而提高.","authors":[],"doi":"","fpage":"349","id":"fc7d9b72-d5ae-4fb3-9417-a94d9c9b23a3","issue":"4","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"68e7740b-0a49-4cb7-8409-75244b3ae27e","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"818b61a4-4395-4822-aba0-38de78700a2f","keyword":"锰酸锂","originalKeyword":"锰酸锂"},{"id":"c0b429a9-dbbc-412b-8bc6-a39afeac6005","keyword":"锂锰配比","originalKeyword":"锂锰配比"},{"id":"725f6927-8fb6-4c35-bcc5-4e223fc6ef9d","keyword":"锂离子电池","originalKeyword":"锂离子电池"}],"language":"zh","publisherId":"clyjxb200504003","title":"尖晶石锰酸锂的组成对其结构和性能的影响","volume":"19","year":"2005"},{"abstractinfo":"以电解二氧化锰(EMD)和碳酸锂为原料采用固相法合成了尖晶石结构锰酸锂, 锰酸锂和原材料电解二氧化锰的颗粒粒度和形貌具有相似性.在试验范围内, 降低锰酸锂中超细颗粒, 其循环稳定性得到了明显的改善; 过量的锂对锰酸锂改性, 随着锂加入量的增大, 50℃下改性锰酸锂材料循环稳定性呈逐渐上升趋势, 同时比容量有所下降.通过粒度调整、离子改性, 合成了比容量为92.2 mAh·g-1的改性锰酸锂材料, 50 ℃下循环170次容量保持88%, 显示出较好的循环稳定性.","authors":[{"authorName":"阚素荣","id":"3d475c84-8d15-4d55-b69b-c9082545badc","originalAuthorName":"阚素荣"},{"authorName":"卢世刚","id":"4f5a64b6-085f-45d2-a989-0ad1020ea18e","originalAuthorName":"卢世刚"},{"authorName":"李文成","id":"01e784d4-3891-442f-aaa8-e948d3b3de38","originalAuthorName":"李文成"},{"authorName":"王昌胤","id":"861614ef-cc62-4d1e-8008-7343bdcbe371","originalAuthorName":"王昌胤"},{"authorName":"伍乐","id":"20303e65-7c4f-42aa-a1c5-402ccb467d36","originalAuthorName":"伍乐"},{"authorName":"黄松涛","id":"ee456df6-494a-4ca1-b212-e8cb9ca20424","originalAuthorName":"黄松涛"}],"doi":"10.3969/j.issn.0258-7076.2008.03.024","fpage":"387","id":"86a06e57-e06c-4949-8bd0-536160501ba1","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"24a62ca7-0f6b-451f-8242-c802ad31586e","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"72fcff51-c21c-4cc1-8081-eb523a412372","keyword":"二氧化锰","originalKeyword":"二氧化锰"},{"id":"9753f1b0-1e01-48f3-8137-d3a71705c909","keyword":"锰酸锂","originalKeyword":"锰酸锂"},{"id":"777955b4-a932-4465-a59a-33b745a60d5b","keyword":"循环","originalKeyword":"循环"}],"language":"zh","publisherId":"xyjs200803024","title":"尖晶石锰酸锂粒度和离子改性对其循环性能的影响","volume":"32","year":"2008"},{"abstractinfo":"本文以氢氧化锂、醋酸锰及碳酸锰为原料,采用液相法合成凝胶浆料和半固相浆料,利用喷雾干燥法获得球形锰酸锂前驱体,研究了动态焙烧喷雾干燥前驱体制备球形锰酸锂正极材料用于锂离子电池.研究结果显示,动态低温分解与高温分解相结合的方法能有效保持前驱体的球形,合成的球形锰酸锂具有良好的电化学性能.该方法适合于工业化生产球形锂离子电池正极材料.","authors":[{"authorName":"万传云","id":"77017c18-e982-45dd-bfd8-0b1581f2d4ed","originalAuthorName":"万传云"},{"authorName":"吴頔","id":"9e83d23c-fe7b-42e3-894e-d5f583ab5d61","originalAuthorName":"吴頔"},{"authorName":"罗彦飞","id":"5afddcb4-66ad-46ac-b9dd-1fd46b4f2e35","originalAuthorName":"罗彦飞"}],"doi":"","fpage":"1064","id":"40b6a235-09fa-4ee6-bf2c-9b1e5803e955","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"83035b45-be09-4b00-9a8c-4582da69fbf6","keyword":"球形锰酸锂","originalKeyword":"球形锰酸锂"},{"id":"9cc085be-bb63-4a38-aa9f-75a2335ffce4","keyword":"喷雾干燥法","originalKeyword":"喷雾干燥法"},{"id":"539bf01d-d3ef-421b-9546-ad040a16b3e1","keyword":"动态焙烧","originalKeyword":"动态焙烧"},{"id":"7198f6dd-f076-4949-b5b3-bcfc6bcfab63","keyword":"锂离子电池","originalKeyword":"锂离子电池"}],"language":"zh","publisherId":"gsytb201105016","title":"用于锂离子电池球形锰酸锂的工业化制备研究","volume":"30","year":"2011"},{"abstractinfo":"通过氧化还原法在室温下制备出球形MnO2前驱体,以LiOH·H2O为锂源,按照一定锂锰摩尔比混合,在750℃下焙烧8h,得到球形尖晶石LiMn2O4.采用X射线衍射和扫描电镜对MnO2和LiMn2O4进行了表征,并对LiMn2O4样品在室温和高温下作了充放电性能测试.结果表明:合成的样品以球形颗粒存在,粒度大小均匀,分散性和流动性好;室温和高温条件下首次放电比容量分别为128.2和125.0mAh/g,50次循环后容量保持率分别为90%和68%,球形LiMn2O4在室温和高温下均具有较高的比容量和优良的循环性能.","authors":[{"authorName":"黄可龙","id":"fa9a960b-2117-4229-a557-5c74b78a22a2","originalAuthorName":"黄可龙"},{"authorName":"李永坤","id":"d447b468-c6bf-4103-a057-95e33b3af5e3","originalAuthorName":"李永坤"},{"authorName":"刘素琴","id":"e5fdd1e3-53ff-4e3c-8385-68fb61606e49","originalAuthorName":"刘素琴"},{"authorName":"王洪恩","id":"fa156f98-5395-45cd-9ee4-65307d346995","originalAuthorName":"王洪恩"},{"authorName":"胡卫国","id":"dfb10418-d302-4a55-82a8-ec15c9b4439c","originalAuthorName":"胡卫国"},{"authorName":"黄慧丽","id":"24747967-03a5-4b9a-b9b8-f5864a9fda0c","originalAuthorName":"黄慧丽"}],"doi":"","fpage":"1635","id":"7f894b5f-3c82-4a60-b8b2-9f2061be8688","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a8bc23f9-4d97-4f24-8120-d552b900610c","keyword":"MnO2","originalKeyword":"MnO2"},{"id":"0c487873-a485-4c38-bc2f-058ee8f94c2d","keyword":"锰酸锂","originalKeyword":"锰酸锂"},{"id":"1d9c988a-4ab4-4e52-81e6-1ffa132ef3cc","keyword":"球形","originalKeyword":"球形"},{"id":"e2fa8b6a-05dd-4335-aa65-9db5dd51f10f","keyword":"高温性能","originalKeyword":"高温性能"}],"language":"zh","publisherId":"gncl200710022","title":"球形锰酸锂的制备及高温性能研究","volume":"38","year":"2007"},{"abstractinfo":"尖晶石型LiMn2O4正极材料目前还存在初始容量较低、容量衰减快、高温性能差等问题.表面改性是一种常用的改性方法,它能有效地改善锰酸锂的性能.主要介绍了金属氧化物、含Li化合物、聚合物、金属、氟化物、氧化物玻璃以及一些含氧盐对锰酸锂的表面改性及对其循环性能影响的研究进展,概括了锰酸锂不同表面改性方法的优缺点,并提出了可行的改进方案.","authors":[{"authorName":"张靖","id":"1ff2879f-ec6b-4da0-ab31-d5e18e181e48","originalAuthorName":"张靖"},{"authorName":"孙新艳","id":"ff78208f-d3bc-4eb0-9b04-0dbef57c12cb","originalAuthorName":"孙新艳"},{"authorName":"何岗","id":"c648ab28-3d82-4e3b-803c-eb837ef46aaa","originalAuthorName":"何岗"},{"authorName":"洪建和","id":"f1af0939-fcc6-4093-a45d-a19f5a1b2dd2","originalAuthorName":"洪建和"},{"authorName":"何明中","id":"b463d571-4a3f-4cb5-98da-5f50cda93b1f","originalAuthorName":"何明中"}],"doi":"","fpage":"20","id":"2575af3f-0f77-4751-9b6c-55036799f6fa","issue":"13","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"cf576ccf-e11a-4b28-8f8e-7648518c5d25","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"62833cd0-34f0-4271-8142-1ead463f0db1","keyword":"正极材料","originalKeyword":"正极材料"},{"id":"25b6c743-7c6e-4f8f-8283-6b439e3890cf","keyword":"LiMn2O4","originalKeyword":"LiMn2O4"},{"id":"e1671b21-4a5c-4463-97e6-1d38775e3e0c","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"7906985a-bf02-4bf6-a8b3-629b27486a6d","keyword":"高温性能","originalKeyword":"高温性能"}],"language":"zh","publisherId":"cldb201213005","title":"锰酸锂表面改性提高循环性能的研究进展","volume":"26","year":"2012"},{"abstractinfo":"首先以爆轰法合成了球形纳米锰酸锂粉体,然后对若干份实验粉体分别进行了从常温加热到300℃、400℃、500℃、600℃、700℃和800℃的烧结处理,把烧结处理好的实验样品分别在相同衍射条件下进行了X衍射分析,通过衍射曲线可以得到此纳米锰酸锂晶形变化过程.根据衍射数据利用Scherrer公式分别计算出各个烧结处理好的实验样品的晶粒度,研究发现纳米锰酸锂随着加热温度的升高,出现了晶粒2次长大和2次细化交替变化的现象.","authors":[{"authorName":"谢兴华","id":"48868ec6-a7ee-49bc-b259-d4b67ae04cf1","originalAuthorName":"谢兴华"},{"authorName":"李晓杰","id":"f7234941-91e0-403c-b175-20937798cccb","originalAuthorName":"李晓杰"},{"authorName":"李瑞勇","id":"2839ef74-8368-4ff9-bcae-3d5e82fb6e43","originalAuthorName":"李瑞勇"}],"doi":"10.3969/j.issn.1009-9964.2006.04.003","fpage":"8","id":"474ef77a-945b-455b-8757-39ac0dd3a85a","issue":"4","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"de024e79-5405-4e43-a902-85ae4c86fa0d","keyword":"爆轰合成","originalKeyword":"爆轰合成"},{"id":"ac579642-95cf-4eee-aecd-6fbc7a98b9aa","keyword":"纳米锰酸锂","originalKeyword":"纳米锰酸锂"},{"id":"9e1716f9-b184-4b8d-9383-10e0a3aea662","keyword":"晶粒度","originalKeyword":"晶粒度"},{"id":"3e1696cd-6d73-4bdc-be93-2e71a136c1c5","keyword":"细化","originalKeyword":"细化"}],"language":"zh","publisherId":"tgyjz200604003","title":"温度对爆轰合成纳米锰酸锂晶形及粒度的影响","volume":"23","year":"2006"},{"abstractinfo":"采取一次称样,先用高锰酸钾-草酸钠返滴定法测定了尖晶石型锰酸锂样品中高价锰的还原电子的物质的量,而后在磷酸介质中,用高氯酸-硫酸亚铁铵滴定法测定了溶液中的总锰量,减去加入高锰酸钾中的锰量即为样品中的锰量,结合还原电子的物质的量计算得到了尖晶石型锰酸锂中锰的平均价态.对测定锰平均价态的条件,如水浴温度,草酸钠、磷酸和高氯酸的用量进行了详细研究,并确定了最佳实验条件.将该方法应用于掺杂尖晶石型锰酸锂中锰平均价态的测定,所得结果在3.57~3.69之间,与掺杂锰酸锂中锰化合价高于3.5结果一致,相对标准偏差(RSD,n=6)在0.26%~0.30%之间.","authors":[{"authorName":"田建坤","id":"355f1d32-48aa-443c-a1e0-a7d980d35c6b","originalAuthorName":"田建坤"},{"authorName":"张利敏","id":"b719e014-c424-49aa-b76e-63c87e7dec6e","originalAuthorName":"张利敏"},{"authorName":"张海朗","id":"4b421143-e3f3-4d05-ac8b-6275c148bbf7","originalAuthorName":"张海朗"},{"authorName":"邹爱兰","id":"a74d5ee7-6acf-4745-92d5-97b47997db8b","originalAuthorName":"邹爱兰"}],"doi":"10.3969/j.issn.1000-7571.2011.09.015","fpage":"63","id":"f7d993e8-d1b4-4dae-ac55-c739937f271b","issue":"9","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"317ff4eb-26f8-49b6-9e30-3babcb72034a","keyword":"尖晶石型锰酸锂","originalKeyword":"尖晶石型锰酸锂"},{"id":"5c3888d4-1ae0-4727-b964-428c9e935d32","keyword":"锰平均价态","originalKeyword":"锰平均价态"},{"id":"247ddc51-2fc7-46dd-b527-8dc7fb497f4b","keyword":"滴定法","originalKeyword":"滴定法"},{"id":"1cf86271-7674-4357-82a5-2e14c942afb6","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"4630d4b3-31b6-4148-ba41-ee476539774e","keyword":"正极材料","originalKeyword":"正极材料"}],"language":"zh","publisherId":"yjfx201109015","title":"高锰酸钾返滴定法和硫酸亚铁铵滴定法联合测定尖晶石型锰酸锂中锰平均价态","volume":"31","year":"2011"}],"totalpage":2107,"totalrecord":21066}