欢迎登录材料期刊网

材料期刊网

高级检索

采用新型电化学表面处理设备,以10%(质量分数)NH4HCO3溶液为电解质,对12KPAN基碳纤维进行连续化的表面处理,探索了在提高碳纤维/树脂复合材料层间剪切强度的同时降低碳纤维本征拉伸强度损失的结构变化特征及规律。利用SEM、XRD、XPS、Raman等方法研究了改性前后碳纤维表面的物理和化学状态、晶体尺寸和表面有序度。结果显示,在适当的条件下,碳纤维/树脂复合材料的层间剪切强度提高了23.3%,同时碳纤维的拉伸强度仅损失了4.4%。碳纤维/树脂复合材料层间剪切强度的提高是碳纤维表面粗糙度和表面含氧、含氮官能团共同作用的结果。表面处理后碳纤维石墨网片层尺寸减小了6.3%~27.6%,微晶尺寸相应减小;适度的氧化刻蚀使碳纤维表面有序度略有提高,并且产生新的活性点;以上两种作用减小了碳纤维的本征拉伸强度的损失量。

The PAN-based carbon fiber(CF)bundles with 12K were treated continuously by a new equipment of electrochemical modification in 10%(mass fraction) NH4HCO3 electrolyte solution to improve its interfacial bounding strength without compromising the tensile strength simultaneously.SEM,XRD,XPS and Raman spectra were employed to characterize the morphology,chemical states,crystallites size and ordered degree of the CF surface.The results indicate that the interlaminar shear strength(ILSS)of CF/resin composites increases by 23.3% while its tensile strength only decreases by 4.4% under the optimal modified condition.The improvement of interlaminar shear strength causes not only by the increase of surface roughness,but also by the interaction effects of oxygen-containing and nitrogen-containing functional groups on CFs.After electrochemical oxidation the crystallites size decreases by 6.3%~27.6%,and the ordered degree on CF surface increases with the suitable etching which does not peel off the ordered region on the CF surface and creates new cracks;both above reduce the loss of tensile strength.

参考文献

[1] 贺 褔. 碳纤维及其应用技术 [M]. 北京: 化学工业出版社, 2004: 233-256.
[2] 刘 杰, 郭云霞, 梁节英. 碳纤维表面电化学氧化的研究 [J]. 化工进展, 2004, 23(3): 282-285.
[3] 朱 民, 龚真萍. 粘胶基碳布电化学氧化表面处理的研究 [J]. 华东师范大学学报: 自然科学版, 1998(2): 55-60.
[4] He H, Wang J, Li K, Wang J, Gu J. Mixed resin and carbon fibres surface treatment for preparation of carbon fibres composites with good interfacial bonding strength [J]. Materials & Design, 2010, 31(10): 4631-4637.
[5] Zhang G, Sun S, Yang D, et al. The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment [J]. Carbon, 2008, 46: 196-205.
[6] Montes-Morán M A, Gauthier W, Martínez-Alonso A, Tascón J M D, et al. Mechanical properties of high-strength carbon fibres. Validation of an end-effect model for describing experimental data [J]. Carbon, 2004, 42(7): 1275-1278.
[7] 郭云霞, 刘 杰, 梁节英. 电化学改性PAN基碳纤维表面及其机理探析 [J]. 无机材料学报, 2009, 24(4): 853-857.
[8] 刘鸿鹏, 吕春祥, 李永红, 等. 电化学表面处理PAN 基碳纤维的表面性能研究 [J]. 新型炭材料, 2005, 20(1): 39-44.
[9] Mittal J, Bahl O P, Mathur R B. Single step carbonization and graphitization of highly stabilized PAN fibers [J]. Carbon, 1997, 35(8): 1196-1197.
[10] 郭云霞, 刘 杰, 梁节英, 电化学改性对PAN基碳纤维表面状态的影响 [J]. 复合材料学报, 2005, 22(3): 49-54.
[11] Papirer E, Guyon E. Contribution to the study of the surface groups on carbons [J]. Carbon, 1978, 16(4): 127-133.
[12] Ho K K C, Lee A F, Lamorinierea S. Continuous atmospheric plasma fluorination of carbon fibres [J]. Composites: Part A, 2008, 39: 364-373.
[13] 李东风, 王浩静, 王心葵. PAN基碳纤维在石墨化过程中的拉曼光谱 [J]. 光谱学与光谱分析, 2007, 27(11): 2249-2253.
[14] 贺 福. 用拉曼光谱研究碳纤维的结构 [J]. 高科技纤维与应用, 2005, 30(6): 20-25.
[15] Li D, Wang H, He F, Wang X K. Structure and properties of T300 and T700 carbon fibers [J]. New Carbon Materials, 2007, 22: 59-64.
[16] Bansal R, Donnet J, Stoeckli H. Active carbon [M]. New York: NY, Marcel Dekker, 1998.
[17] Shimizu K, Nakahara M. Interfacial debonding strength between the edge surfaces of pyrolytic graphite and epoxy resins [J]. Journal of Material Science, 1992, 27(22): 6134-6140.
[18] 张 开. 高分子界面科学 [M]. 天津: 天津大学出版社, 1997.
[19] 房宽峻. 黏胶基碳纤维阳极氧化机理与工艺研究. 上海: 中国纺织大学, 1993.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%