The isothermal compression of M50 steel is carried out on a Gleeble-3500 thermo-mechanical simulator in temperature range of 1 223—1 423 K and strain rates range of 10—70 s—1. The results show that the carbides play a signiifcant role in the lfow be-havior and microstructure evolution during isothermal compression of M50 steel. The average apparent activation energy for defor-mation in isothermal compression of M50 steel is (281.1±42.6) kJ?mol—1 at the strains of 0.4—0.8. The dynamic recrystallization of austenite grains occurs in isothermal compression of M50 steel at 1 363 K and 1 393 K, enhancing with the increase of strain rate and/or strain. The volume fraction of the carbides decreases with the increase of deformation temperature during isothermal com-pression of M50 steel and the ifne carbides inhibit the dynamic recrystallization of austenite grain. With the occurrence of dynamic recrystallization, the austenite grains are reifned, leading to a minor increase in the lfow stress and apparent activation energy for deformation in isothermal compression of M50 steel. The austenite grains begin to coarsen at 1 423 K and dynamic recrystalliza-tion is limited. Hot working of M50 steel should not be performed above 1 393 K in order to achieve good workability.
参考文献
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%