欢迎登录材料期刊网

材料期刊网

高级检索

将TiO_2和CeO_2颗粒添加到由50 g/L PbO和4 mol/LNaOH组成的镀液中,通过阳极电沉积的方法在铝基体上制备了α-PbO_2-TiO_2-CeO_2复合镀层,用作铝基二氧化铅电极的中间层.通过研究镀液中固体颗粒的质量浓度和各种工艺条件对α-PbO_2-TiO_2-CeO_2复合镀层外观及结合力的影响,确定了最佳配方和操作条件为:TiO_2 15 g/L,CeO_2 10g/L,温度40℃,电流密度0.5 A/dm~2,电沉积时间3 h.在此条件下所得的复合镀层综合性能较好,其TiO_2和CeO_2含量(质量分数)分别为3.77%和2.13%.扫描电镜结果显示,固体颗粒的掺杂能抑制α-PbO_2晶胞的长大,起到细化晶粒的作用.X射线衍射分析表明,固体颗粒的加入改变了α-PbO_2镀层晶粒的择优取向,降低了其衍射峰强度.

An α-PbO_2-TiO_2-CeO_2 composite was prepared on aluminum substrate by anodic electrodeposition from a 50 g/L PbO + 4 mol/L NaOH bath containing TiO_2 and CeO_2 particles, which is used as the interlayer for Al-based PbO_2 electrode. Based on the study of the effects of mass concentrations of solid particles and various process parameters on the appearance and adhesion of the composite, the optimal bath formulation and operation conditions were obtained as follows: TiO_2 15 g/L, CeO_2 10 g/L, current density 0.5 A/dm~2, temperature 40 ℃ and electrodeposition time 3 h. Under these conditions, the composite contains 3.77wt% TiO_2 and 2.13wt% CeO_2 and has good comprehensive performance. The scanning {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"盐类和氧化物在载体上自发单层分散的现象和原理自被发现以来在国内外得到了广泛认同,国内外这方面的工作越来越多. 我们从国内外同行近年发表的上百篇有关论文中,选择一部分内容加上我们的部分工作做一个简单的综述,介绍有关自发单层分散原理在基础研究和应用两个方面的新进展. ","authors":[{"authorName":"王春明","id":"1a34afc2-0898-4ee9-b258-1a983b6e3cf0","originalAuthorName":"王春明"},{"authorName":"赵璧英","id":"c7afdc45-bc02-4c47-bcf9-2aa2c120dcf3","originalAuthorName":"赵璧英"},{"authorName":"谢有畅","id":"15101a9b-7adf-4670-9da5-8bf53c6f560f","originalAuthorName":"谢有畅"}],"doi":"","fpage":"475","id":"d816dd99-ee2f-472a-97ad-aa03b1a437ea","issue":"6","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"dfe057fc-7916-4e4e-a210-187b5ea955a3","keyword":"盐","originalKeyword":"盐"},{"id":"6e65968d-135e-465a-b47b-51043cc76930","keyword":"金属氧化物","originalKeyword":"金属氧化物"},{"id":"d771ab7a-f188-4f9c-a70b-b4267566d1bf","keyword":"载体","originalKeyword":"载体"},{"id":"1f9490c5-1612-476e-8a59-16de2b9e9c43","keyword":"自发单层分散","originalKeyword":"自发单层分散"},{"id":"2ca7c5a7-1e03-4213-ba60-fe34e4c6db35","keyword":"单层分散","originalKeyword":"单层分散"},{"id":"963dc47c-b103-4138-93ff-25ae919f1a60","keyword":"阈值","originalKeyword":"阈值"},{"id":"fee6f71a-4bfe-47b4-b35b-7226e3c8611d","keyword":"分散","originalKeyword":"热分散"}],"language":"zh","publisherId":"cuihuaxb200306017","title":"盐类和氧化物在载体上自发单层分散研究新进展","volume":"24","year":"2003"},{"abstractinfo":"以采用水晶化与荷电复合分散法制得的自分散型纳米 AlOOH 作为前驱物、碳酸铝铵分解得到的纳米α-Al2O3作为晶种,利用AlOOH在水中具有良好的自分散性能,采用溶胶均匀分散混料法新工艺,将旷α-A12O3晶种均匀分散到纳米γ-A12O3晶体的溶胶中,在190℃水下,使A100H转变成氧化铝,经930℃煅烧得到平均粒径为60nm的纳米α-Al2O3.利用XRD、TEM等手段分析研究了前驱物微细化及其分散性能对晶种的作用和氧化铝转型温度的影响.","authors":[{"authorName":"廖海达","id":"fbbf2b87-6a62-490d-848c-c6d961caf242","originalAuthorName":"廖海达"},{"authorName":"黄联晓","id":"c7cf4cc3-ef92-4635-9d2c-256be6271e20","originalAuthorName":"黄联晓"},{"authorName":"蒙艳彬","id":"301069ab-f525-4308-8586-198afc4df60c","originalAuthorName":"蒙艳彬"},{"authorName":"昊伯麟","id":"d63de127-381d-4ef2-97fd-636377db2b66","originalAuthorName":"昊伯麟"},{"authorName":"张联盟","id":"3974fb45-6109-4a0a-b082-5b6ea0231c03","originalAuthorName":"张联盟"}],"doi":"","fpage":"120","id":"e27d89a8-12ca-425c-84ea-cd903fb27d66","issue":"Z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"70b5df54-bfb4-4ee4-b905-115be999dcc3","keyword":"水法","originalKeyword":"水热法"},{"id":"f685e427-47dc-4ecf-951f-537849a6b4e3","keyword":"自分散","originalKeyword":"自分散"},{"id":"b1dbe7b7-6ba0-4c06-89f7-f302b847f96b","keyword":"纳米AIOOH","originalKeyword":"纳米AIOOH"},{"id":"c65b194f-2ca3-4116-a18f-20e84a3b75a7","keyword":"纳米氧化铝","originalKeyword":"纳米氧化铝"}],"language":"zh","publisherId":"cldb2008Z2036","title":"自分散型纳米 AIOOH 水制备纳米α-Al2O3粉体","volume":"22","year":"2008"},{"abstractinfo":"系统地研究了以廉价的偏钛酸为原料,常压水法一步合成纳米钛酸钡粉体的分散性问题.通过考察PEG加入方式和加入量,得出了钛酸钡粉体的改性方法.采用PEG分散偏钛酸,保证PEG与偏钛酸摩尔比0.02∶1的条件下制备出分散性良好的钛酸钡粉体.经IR分析表明PEG在偏钛酸颗粒表面产生吸附;TEM分析表明改性后的偏钛酸粉体为分散的球形,钛酸钡粉体为方形,无明显团聚.分析表明PEG在400℃挥发完全,对粉体的进一步加工不会造成影响.","authors":[{"authorName":"冯秀丽","id":"a5226ed5-bf27-4bc3-ae26-3a415c50298d","originalAuthorName":"冯秀丽"},{"authorName":"王庆印","id":"f577b64b-a049-484b-877c-19f9072dfcdc","originalAuthorName":"王庆印"},{"authorName":"杨争","id":"c0551031-d23c-4377-976b-1977c2c7bc7b","originalAuthorName":"杨争"},{"authorName":"王公应","id":"43caff2b-d56e-4ce9-abc4-925b6a4f1b50","originalAuthorName":"王公应"}],"doi":"","fpage":"167","id":"21f2abd5-2393-48ce-9109-a40a4e55b94d","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"210c821c-ae6b-43a3-a7cb-3682d84fc72c","keyword":"纳米粒子","originalKeyword":"纳米粒子"},{"id":"40a2efed-88e1-4fb0-b3ec-a1bb435ae7bc","keyword":"钛酸钡","originalKeyword":"钛酸钡"},{"id":"348f5772-823a-442b-82fa-0cbec5d8b691","keyword":"团聚","originalKeyword":"团聚"},{"id":"8d8affbe-3920-4d50-8c2c-18f0b903e5a3","keyword":"分散剂","originalKeyword":"分散剂"},{"id":"9c8de6d7-c073-49e2-8a89-8d570c87441e","keyword":"聚乙二醇2000","originalKeyword":"聚乙二醇2000"}],"language":"zh","publisherId":"cldb2006z2049","title":"常压水法制备纳米钛酸钡粉体的分散性研究","volume":"20","year":"2006"},{"abstractinfo":"为制备出分散性好、粒径分布均匀且产率高的炭微球,运用正交试验,采用水炭化法,以葡萄糖为碳源、聚丙烯酸钠为分散剂,对炭微球的制备工艺条件进行优化.结果表明:反应温度是影响炭微球粒径和产率的主要因素;当反应温度为180℃,反应时间为12 h,葡萄糖浓度为0.7 mol·L-1以及分散剂加入量为0.5%(ω)时,可制备出平均粒径约为420 nm,产率高达91%的单分散炭微球.","authors":[{"authorName":"李赛赛","id":"7c702d55-407a-486d-ab77-316224bde838","originalAuthorName":"李赛赛"},{"authorName":"梁峰","id":"f135a416-484a-40d8-a165-bcf521e370db","originalAuthorName":"梁峰"},{"authorName":"李发亮","id":"7ed8bbb9-8586-4759-9654-37fc41d26174","originalAuthorName":"李发亮"},{"authorName":"王军凯","id":"cd2d1723-cc66-4629-80fb-27e955e01ab9","originalAuthorName":"王军凯"},{"authorName":"宋健波","id":"1be868d1-7a06-4a4c-ac7a-628220ed3d5d","originalAuthorName":"宋健波"},{"authorName":"张海军","id":"05c3fbce-2f9d-4efc-b48b-d84c2b952f96","originalAuthorName":"张海军"}],"doi":"10.3969/j.issn.1001-1935.2017.01.009","fpage":"32","id":"e20df83f-c7be-464e-8bcc-ba2497d99024","issue":"1","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"fab2af8f-3108-4d99-bd06-a4ba30db7ac1","keyword":"葡萄糖","originalKeyword":"葡萄糖"},{"id":"27f0e5bf-800f-4b22-a79c-317c64e5280d","keyword":"水炭化法","originalKeyword":"水热炭化法"},{"id":"56a3f1b8-6eb8-4ec9-b9e3-810fb10dade7","keyword":"炭微球","originalKeyword":"炭微球"},{"id":"97588f87-1ccb-4449-b1b0-a953dd31d97f","keyword":"反应温度","originalKeyword":"反应温度"},{"id":"cf796b0f-eb22-4e9a-93b3-b76c88013380","keyword":"反应时间","originalKeyword":"反应时间"},{"id":"c4b07196-3e69-4dcc-ac66-a3a8d2015b72","keyword":"分散剂","originalKeyword":"分散剂"},{"id":"889ae6aa-4224-4c8b-8a3b-506a4eeb00ad","keyword":"正交试验","originalKeyword":"正交试验"}],"language":"zh","publisherId":"nhcl201701009","title":"葡萄糖水炭化制备单分散炭微球的工艺优化研究","volume":"51","year":"2017"},{"abstractinfo":"以天然鳞片石墨为原料,用改进的Hummers法制备氧化石墨。超声分散制备氧化石墨烯溶液,通过加入不同量的水合肼调节溶液的pH值,再通过水还原,制备了在水中稳定分散的石墨烯溶液。利用扫描电子显微镜(SEM)、高分辨透射电镜(HR-TEM)、拉曼光谱(Raman)、原子力显微镜(AFM)、X射线衍射分析(XRD)、zeta电位及光学显微镜对制备的样品进行了表征,研究了不同温度、pH值对石墨烯溶液稳定性的影响。","authors":[{"authorName":"冉启燕","id":"4a10266c-fb9f-4ab2-afe4-b2e02607783f","originalAuthorName":"冉启燕"},{"authorName":"张海燕","id":"ce731105-fa43-4abc-ab1f-8acbdd464ef8","originalAuthorName":"张海燕"},{"authorName":"陈易明","id":"520d2c19-673a-4dcc-8000-8db4c52d7962","originalAuthorName":"陈易明"},{"authorName":"叶剑","id":"baf5bab8-e65b-495b-9b31-3258fde471c8","originalAuthorName":"叶剑"},{"authorName":"李春辉","id":"b1dd25b0-a16d-4a86-8b07-32711a11214a","originalAuthorName":"李春辉"}],"doi":"","fpage":"2210","id":"1f42800a-8637-45d1-baab-c18c0e2f882e","issue":"16","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"106935a7-a690-47cd-bd1c-83d802431da5","keyword":"氧化石墨","originalKeyword":"氧化石墨"},{"id":"fe7b1d71-9c8b-462b-8ae9-29ca8c9058dc","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"cab73ae7-19ae-4f3d-8f55-e9d934c6340e","keyword":"高压釜还原","originalKeyword":"高压釜热还原"},{"id":"31e93e12-17c4-410d-a84f-2e3b83a4ca2f","keyword":"稳定性","originalKeyword":"稳定性"}],"language":"zh","publisherId":"gncl201216022","title":"高压釜还原制备稳定分散的石墨烯溶液","volume":"43","year":"2012"},{"abstractinfo":"采用分散法制备了脱硫吸附剂CuCl/SBA-15,用XRD方法测定了CuCl在SBA-15上的单层分散阈值,采用静态吸附实验评价吸附剂对模型燃油中噻吩的吸附性能,并研究了稀土助剂CeO2的加入及模型燃油中甲苯的存在对吸附剂脱硫性能的影响.结果表明,CuCl在SBA-15上的分散阈值为:0.3502g CuCl/g SBA-15,当CuCl负载量达到0.33g CuCl/g SBA-15时,对噻吩的吸附量达到最大值,为0.8767mmol/g,显示出阈值效应;添加稀土助剂CeO2能提高吸附剂的脱硫性能,最合适的添加量为m(Ce)/m(Cu)=0.3,此时吸附量提高了7.3%;甲苯对噻吩在吸附剂上的吸附有较大的影响,但对添加CeO2的吸附剂的影响相对较小.","authors":[{"authorName":"单佳慧","id":"3677c44c-e0b0-47ec-9595-ec9666131b75","originalAuthorName":"单佳慧"},{"authorName":"刘晓勤","id":"9a332b13-8c07-48e1-8d8a-51c8f17b2ea5","originalAuthorName":"刘晓勤"}],"doi":"","fpage":"2194","id":"a6236cc1-3c11-4c18-bede-a3bd64a29262","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d147eca3-e587-47dc-80ac-22d5c4737324","keyword":"燃料油","originalKeyword":"燃料油"},{"id":"ee4f1625-6071-4583-9ec6-07d0a47ec9cd","keyword":"吸附脱硫","originalKeyword":"吸附脱硫"},{"id":"12bb8ec9-1e2f-4f57-858e-3dd0749f5ea2","keyword":"噻吩","originalKeyword":"噻吩"},{"id":"1f6b60f2-356b-4f71-b2f3-3054839818bf","keyword":"分散阈值","originalKeyword":"分散阈值"},{"id":"44c4f510-2f56-4f2d-ada2-3c5fa86b9627","keyword":"SBA-15","originalKeyword":"SBA-15"}],"language":"zh","publisherId":"gncl201012043","title":"分散法制备的CuCl/SBA-15的吸附脱硫性能","volume":"41","year":"2010"},{"abstractinfo":"以NiCl2 和NH4HCO3为原料, 探讨了采用常温合成-水改性-中温焙烧工艺制备分散性纳米NiO的可行性.常温条件下制备的产物主要由NiCO3·Ni(OH)2和Ni(OH)2微晶相组成且团聚现象突出;水改性可进一步促进沉淀的形成,降低产物中Ni(OH)2及水分含量,使后继焙烧产物(纳米NiO)的分散性得到显著改善.热力学计算表明: 在Ni2+-NH3-CO32--H2O体系中, 升高温度有利于镍氨络离子的解离, 促进NiCO3 和Ni(OH)2沉淀的形成.温度越高,形成NiCO3的热力学可能性越大.","authors":[{"authorName":"李健","id":"355e53a8-451e-4eaa-91d6-4bd2be0a87f5","originalAuthorName":"李健"},{"authorName":"向兰","id":"4ebfe402-abcb-4176-b2c1-eca2081ee508","originalAuthorName":"向兰"},{"authorName":"金涌","id":"ea4d3301-d2ed-46e6-99a0-a0ba2e96af96","originalAuthorName":"金涌"}],"doi":"","fpage":"425","id":"9deab872-5c7c-46be-af26-952f77e0ed95","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"a6cc202d-83b4-4fd8-9ab5-094dcf56b361","keyword":"纳米氧化镍","originalKeyword":"纳米氧化镍"},{"id":"cb8d1e52-bb07-4b9a-9d08-712fcbc7bcee","keyword":"水改性","originalKeyword":"水热改性"},{"id":"1b9f2705-9df6-4dfd-9932-acb8d5c9a7bd","keyword":"分散","originalKeyword":"分散"}],"language":"zh","publisherId":"xyjsclygc200404021","title":"水改性法制备分散性纳米氧化镍","volume":"33","year":"2004"},{"abstractinfo":"根据气凝胶遮光剂复合材料的微观结构特性,首次提出用多体散射理论计算其遮光剂球形颗粒分散体系的红外透过率.通过分析小角度近似和多次散射因子对比尔-朗伯定律中散射传递函数的影响,建立了气凝胶遮光剂复合材料前向散射透过率的计算方法,编写计算程序,对SiO2气凝胶中遮光剂为SiC和ZrO2的两种材料进行了计算.计算结果表明:在实验允许的范围内,遮光剂质量分数越大、材料厚度越大,复合材料隔热效果越好;在遮光剂质量分数和材料厚度一定的情况下,由于复折射率的影响,不同的遮光剂材料有不同的最佳制备半径,SiC和ZrO2遮光剂球形颗粒的最佳制备半径分别为1.2μm和0.7μm.","authors":[{"authorName":"凌俐","id":"3fcdddb3-2c0d-4ca2-8a9b-79e2e293cac9","originalAuthorName":"凌俐"},{"authorName":"毕岗","id":"00622fd7-4456-4e19-bf7e-6ce38232ea9b","originalAuthorName":"毕岗"},{"authorName":"黄敏","id":"c8c9dc36-81bd-4715-ba06-3d5b5f3b5e5f","originalAuthorName":"黄敏"},{"authorName":"丁金婷","id":"3cbcf52f-5ca9-4710-929a-dfb7eb4ff101","originalAuthorName":"丁金婷"},{"authorName":"陈国宏","id":"938cb8d2-66fd-4aba-894b-a1a86248a0ec","originalAuthorName":"陈国宏"}],"doi":"","fpage":"136","id":"843e366b-d07a-43fb-975f-6df398afb89c","issue":"24","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0913b663-ec10-42b4-b469-bbe88c8b9533","keyword":"气凝胶","originalKeyword":"气凝胶"},{"id":"cd569d09-f7d6-4624-afa6-3b285526ce91","keyword":"遮光剂","originalKeyword":"遮光剂"},{"id":"f15e35a4-35ed-41ad-ac9f-43de0b87c08c","keyword":"多体散射理论","originalKeyword":"多体散射理论"},{"id":"ee09e4f5-33a3-4de4-ac8b-d45d8b13c046","keyword":"红外透过率","originalKeyword":"红外热透过率"}],"language":"zh","publisherId":"cldb201324036","title":"遮光剂球形颗粒分散系红外透过率研究","volume":"27","year":"2013"},{"abstractinfo":"选用聚乳酸(PLA)为骨架基体,聚乙二醇(PEG) 6000为致孔剂,用熔挤出技术(HME)制备了难溶性药物双氯芬酸钠(DS)的固体分散物.通过改变PEG6000与DS含量,比较了对DS体外溶出速率的影响.结果发现,DS的溶出速率随着PEG6000与DS含量的增加而增加,且呈现良好的线性关系.当PLA、PEG6000、DS质量分数为67%、30%、3%时,体系18d药物溶出度为76.5%,若将DS质量分数提高到5%或将PEG6000质量分数提高到40%,则体系分别在4d和3d即达到最大溶出度.文中还对体系中DS的分散机制进行了研究,发现DS主要分散于PEG6000中,而PLA作为骨架材料有效稀释了药物浓度,并延长了药物的释放时间.","authors":[{"authorName":"李根林","id":"e78d97d7-a4ce-42ee-bfd4-8ed07b421d2c","originalAuthorName":"李根林"},{"authorName":"吴宏","id":"d95dc522-aa6c-46da-8032-def7ab347dd4","originalAuthorName":"吴宏"},{"authorName":"郭少云","id":"f081bf7b-6eb7-47e7-9da8-d92adab944d1","originalAuthorName":"郭少云"}],"doi":"","fpage":"117","id":"431b38ab-1ba9-491a-bd64-fef52c990071","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"e9cc5cc9-8f21-48b0-b560-83ac7dd10f22","keyword":"固体分散体","originalKeyword":"固体分散体"},{"id":"75187987-01a9-4332-b1ab-6b99d38d0ef0","keyword":"熔挤出","originalKeyword":"热熔挤出"},{"id":"66c3b00b-1d94-4e42-b644-6a3544c072f3","keyword":"双氯芬酸钠","originalKeyword":"双氯芬酸钠"},{"id":"d8779023-be62-4dcc-9838-c942b2b2b483","keyword":"药物缓释","originalKeyword":"药物缓释"},{"id":"31b1fc6f-c1ab-4e48-8472-746dfa66aece","keyword":"骨架片","originalKeyword":"骨架片"},{"id":"e0b7d675-816d-4db1-9de6-5fd885ff060f","keyword":"聚乳酸","originalKeyword":"聚乳酸"}],"language":"zh","publisherId":"gfzclkxygc201306028","title":"熔挤出法制备的双氯芬酸钠固体分散体系的溶出度","volume":"29","year":"2013"},{"abstractinfo":"系统地研究了以Fe(NO3)3为原料,水热合成α-Fe2O3纳米粒子时,前驱物pH值对产物形貌的控制作用.实验结果显示,以Fe(NO3)3为前驱物直接进行水热处理,所得产物形貌为片状;如果Fe(NO3)3溶液用氨水中和形成Fe(OH)3凝胶后,再调节不同的pH值作前驱物,经水热处理所得产物均为单晶粒子,且在不同的pH值下,粒子形貌明显不同:当pH为1时为菱形粒子;pH为3,5时粒子形貌为近球形多孔结构;pH为7时为菱形粒子;pH为9时粒子形貌为近球形、无孔结构.同时分析了在水条件下前驱物pH值对产物粒径的影响,另外还讨论了反应体系中存在的电解质对α-Fe2O3生成速率的影响机理.","authors":[{"authorName":"吴东辉","id":"3b59db97-b1da-49b1-938e-e9265c7dae8a","originalAuthorName":"吴东辉"},{"authorName":"施新宇","id":"d82b71d1-ae4f-46d2-a18d-f71918d96833","originalAuthorName":"施新宇"},{"authorName":"章忠秀","id":"ffdeea33-4cf0-47e0-bd13-06876ed88f0c","originalAuthorName":"章忠秀"},{"authorName":"汪信","id":"b4fc2ba1-2d38-431b-8ba1-50f07526bb70","originalAuthorName":"汪信"}],"doi":"10.3969/j.issn.1001-1625.2004.05.006","fpage":"24","id":"354ef978-6056-498f-bce0-68c594d82e1d","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"ec288d13-d0fa-44af-9c8a-376ab13779d9","keyword":"α-Fe2O3","originalKeyword":"α-Fe2O3"},{"id":"1cc32049-f604-4e32-827d-602a510c3bfb","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"695819e5-b5fc-45a9-8d2e-d64acea6ebb6","keyword":"纳米粒子","originalKeyword":"纳米粒子"},{"id":"eff91432-3ff0-4a0b-81a7-636345237e3d","keyword":"单晶","originalKeyword":"单晶"}],"language":"zh","publisherId":"gsytb200405006","title":"水法制备均分散α-Fe2O3纳米粒子","volume":"23","year":"2004"}],"totalpage":3308,"totalrecord":33075}