{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文通过测量SiO2纳米颗粒在不同工质、不同浓度的悬浮液在不同温度下的导热系数,结合了液氮冷冻、切割并在断面上复形的技术,并利用电镜观察了纳米颗粒在液体中的分布、团聚和液体与之的亲和性.着重分析了纳米颗粒悬浮液中SiO2纳米颗粒与液体的亲和性对悬浮液导热性能影响的机理.文中提出了SiO2纳米颗粒的表面吸附层和在作布朗运动时出现\"微对流\"而使悬浮液强化.","authors":[{"authorName":"王补宣","id":"102f6e4b-06c1-4146-8745-0ec44cad1d5f","originalAuthorName":"王补宣"},{"authorName":"李宏","id":"5edf1192-1958-4744-bc45-79261f184c69","originalAuthorName":"李宏"},{"authorName":"彭晓峰","id":"f88b1aba-8197-4990-9ebb-d9ef9c11c0db","originalAuthorName":"彭晓峰"}],"doi":"","fpage":"664","id":"1041e902-5a09-46a5-86ec-5723a27b777f","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"d7de2d6f-b256-4df3-b934-c227148f4526","keyword":"纳米颗粒悬浮液","originalKeyword":"纳米颗粒悬浮液"},{"id":"675081f4-ab24-4bfd-9f92-1d43e9c98085","keyword":"布朗运动","originalKeyword":"布朗运动"},{"id":"3579ed73-9157-4618-a6bd-92cbdcd534b3","keyword":"吸附层","originalKeyword":"吸附层"},{"id":"45d69e1f-184a-454d-9ed0-b80d9611b49c","keyword":"强化","originalKeyword":"换热强化"}],"language":"zh","publisherId":"gcrwlxb200304036","title":"吸附作用在纳米颗粒悬浮液强化中的试验与机理研究","volume":"24","year":"2003"},{"abstractinfo":"本文分析了潜热型功能热流体强化的物理机制,并基于等效比热模型,对等热流条件下圆管内该类流体层流流动强化的各因素进行了敏感性分析.同时,改进了内部流动传统的Nu定义,使之能更有效地表征功能热流体强化程度.","authors":[{"authorName":"胡先旭","id":"e9c83092-cd25-477a-bcda-84bb54e14882","originalAuthorName":"胡先旭"},{"authorName":"张寅平","id":"a4833b33-d6c8-4ebf-8f54-e7343cf77787","originalAuthorName":"张寅平"}],"doi":"","fpage":"224","id":"439f5a40-0d28-4bbe-b50f-8ede12186fc7","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c483dbdc-3ce1-44c6-a326-48cc34f79a30","keyword":"强化","originalKeyword":"换热强化"},{"id":"02ba8fda-7ec9-4be8-9122-ad53ef108557","keyword":"教胶囊","originalKeyword":"教胶囊"},{"id":"7de982a4-f48b-44b0-b6d1-64c5a608fa00","keyword":"相变","originalKeyword":"相变"}],"language":"zh","publisherId":"gcrwlxb200202027","title":"等热流条件下潜热型功能热流体强化机理研究","volume":"23","year":"2002"},{"abstractinfo":"提出一种新型百叶窗结构梭形百叶窗,它与一般的矩形百叶窗结构相比,流道从翅片中间截面到管连接处逐渐变宽,有较多流体冲刷管壁表面,增加管壁附近流体温度梯度,从而使传热增强。同时降低了流体流动阻力。具有较好的流动和传热性能。应用FLUENT软件对两种百叶窗结构下空气的流场、温度场和压力场进行了CFD研究,分析不同Re数对换热和流动性能的影响。","authors":[{"authorName":"张丽娜","id":"c2d41057-d691-4501-8046-9f7b219b67b3","originalAuthorName":"张丽娜"},{"authorName":"刘敏珊","id":"d197d4ac-0d24-4993-ac05-969bf4766565","originalAuthorName":"刘敏珊"},{"authorName":"董其伍","id":"4f7448ad-b582-4fda-aadc-c4637e20a1eb","originalAuthorName":"董其伍"}],"doi":"","fpage":"323","id":"daefc7da-8c9a-4f4b-8c87-6f3c1a0c6374","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c84dd938-58f3-48a9-8756-ad0972b7fa5e","keyword":"百叶窗","originalKeyword":"百叶窗"},{"id":"38355bc4-c86c-4b9d-ba30-4fa0f1af80b1","keyword":"强化","originalKeyword":"换热强化"},{"id":"9958731d-b36c-4c84-829e-ddf4d55a19fa","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"8ea53322-dfb1-41c9-8906-f1651f06663c","keyword":"对流","originalKeyword":"对流换热"}],"language":"zh","publisherId":"gcrwlxb201202038","title":"梭形百叶窗结构内传热强化数值分析","volume":"33","year":"2012"},{"abstractinfo":"导出管内湍流Nu与局域时均参数的关系式,将对流的场协同理论扩展至湍流.分析了管内对流的特点,并根据场协同理论提出强化湍流的方法,发展了一种新型强化热管-交叉椭圆管,既适合于层流强化也适合于湍流强化,其强化传热效果显著而流阻较小.","authors":[{"authorName":"孟继安","id":"58184349-c80b-424f-93f3-5edb00f0a050","originalAuthorName":"孟继安"},{"authorName":"陈泽敬","id":"359c52ee-45b8-4fe6-b857-7657366bf88c","originalAuthorName":"陈泽敬"},{"authorName":"李志信","id":"b1042539-e0f9-4e3a-85ae-a75e4bb05c50","originalAuthorName":"李志信"},{"authorName":"过增元","id":"f3debc87-a4aa-4f41-addb-5e13780b8a08","originalAuthorName":"过增元"}],"doi":"","fpage":"652","id":"ae83f86b-8d7f-4e62-b61d-e695912fe294","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"94da35e8-9097-4813-a112-4f8d8cbe9a11","keyword":"对流强化","originalKeyword":"对流换热强化"},{"id":"cbc0d04d-8bb4-41fd-981f-a98681bb280e","keyword":"场协同理论","originalKeyword":"场协同理论"},{"id":"f44386d2-03f9-4cd9-aeb3-53e09cf744fc","keyword":"交叉椭圆","originalKeyword":"交叉椭圆"}],"language":"zh","publisherId":"gcrwlxb200304032","title":"管内对流的场协同分析及强化","volume":"24","year":"2003"},{"abstractinfo":"本文建立了分析带有相变微胶囊的潜热型功能流体的流动和热过程数理模型,应用有限差分法和移动热源法进行联合求解.计算结果表明,相变微胶囊的加入,较好地提高了流体的热性能.获得了相变颗粒大小和体积分数对强化影响等结果.计算结果对该类流体的设计和应用提供了理论依据.","authors":[{"authorName":"白凤武","id":"a668c00b-af7b-47e0-84cc-3fa61d9824ee","originalAuthorName":"白凤武"},{"authorName":"卢文强","id":"2f4b678d-3920-465b-a311-6206b630ea8e","originalAuthorName":"卢文强"}],"doi":"","fpage":"445","id":"03f18f19-0193-4a86-bd8c-fc619e13d658","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"baab2b02-7baf-4953-89e4-e6a5a58e5287","keyword":"潜热型功能流体","originalKeyword":"潜热型热功能流体"},{"id":"c700f4fc-e225-4e7a-a3e6-cde96b273dfa","keyword":"有限差分法","originalKeyword":"有限差分法"},{"id":"d14df705-19db-49de-8800-acbb0d60e43f","keyword":"移动热源法","originalKeyword":"移动热源法"}],"language":"zh","publisherId":"gcrwlxb200303024","title":"潜热型功能流体强化分析","volume":"24","year":"2003"},{"abstractinfo":"升膜蒸发是利用微细槽道对液体的毛细抽吸作用,在强化管外表面覆盖一层薄液膜,进而以薄膜蒸发的形式实现强化.本文针对强化管在水中的浸入深度,蒸发压力,加热壁面过热度等因素对升膜蒸发热性能的影响展开实验研究.实验结果表明随着管外液位的降低升膜蒸发系数明显提高,此外,蒸发压力和加热壁面过热度因素对升膜蒸发热性能也有着显著的影响.","authors":[{"authorName":"杨国忠","id":"257969da-e9c3-4449-b028-eb3c16bb774b","originalAuthorName":"杨国忠"},{"authorName":"王如竹","id":"a0dd81f1-9acc-4efb-aeee-472617c8947b","originalAuthorName":"王如竹"},{"authorName":"夏再忠","id":"3710b111-e74d-407f-a8e7-5b6c11534e68","originalAuthorName":"夏再忠"}],"doi":"","fpage":"280","id":"e5a83960-307a-4e78-8c85-37f133cfaa9a","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"51e021bd-cebf-428c-9285-c4cb824b472b","keyword":"水","originalKeyword":"水"},{"id":"d95692f4-75b1-46e2-a777-6688b962e645","keyword":"强化管","originalKeyword":"强化管"},{"id":"150fd46c-2188-4919-8cfc-7e475c130e3f","keyword":"升膜蒸发","originalKeyword":"升膜蒸发"},{"id":"fa6e86a1-b16b-4dea-a84a-c6baf8cea251","keyword":"实验研究","originalKeyword":"实验研究"}],"language":"zh","publisherId":"gcrwlxb200702031","title":"强化管管外升膜蒸发特性实验","volume":"28","year":"2007"},{"abstractinfo":"本文以实验研究与数值模拟相结合的方式,对喷涂了不同厚度的两种不同涂料的一系列CPU散热片进行了自然对流条件下的辐射强化研究,以测试这两种涂料的辐射强化热性能,并找出其强化辐射的相关规律.实验与数值模拟的结果表明,这两种涂料的确能够强化辐射;散热片散热热阻在有适当厚度涂层时比无涂层时减少了10%左右;在相同载荷及边界温度条件下,散热片温度在有涂层时比无涂层时降低多达4℃;对于同种涂料,涂层厚度越薄强化散热能力越强;对于相同厚度的涂层,涂料导热率越大其辐射散热能力越强.","authors":[{"authorName":"谢小青","id":"12b8252c-1212-4967-a4d6-bf7e8c07a70d","originalAuthorName":"谢小青"},{"authorName":"莫冬传","id":"ccb2aaae-986d-4b7f-b300-7e84d7784938","originalAuthorName":"莫冬传"},{"authorName":"陈粤","id":"12a784cb-31ab-43d4-8b65-e30b835544e2","originalAuthorName":"陈粤"},{"authorName":"丁楠","id":"6c3edf15-1f81-4025-8710-6df9a9180123","originalAuthorName":"丁楠"},{"authorName":"吕树申","id":"94742743-464d-4015-b10d-99a473f06833","originalAuthorName":"吕树申"}],"doi":"","fpage":"1035","id":"ce22e876-80ea-4ae1-8781-cb65f502f3dd","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"b8602fce-1177-448e-bfa2-af2dfc71c590","keyword":"辐射涂料","originalKeyword":"辐射涂料"},{"id":"368afdde-6da5-4080-8788-dea614737e85","keyword":"自然对流","originalKeyword":"自然对流"},{"id":"5623adfe-ebe5-4068-9e47-c573e0e4f2ad","keyword":"Thermal Desktop","originalKeyword":"Thermal Desktop"}],"language":"zh","publisherId":"gcrwlxb200906037","title":"强化辐射涂层的性能研究","volume":"30","year":"2009"},{"abstractinfo":"对多孔材料强化管内进行了数值研究,详细讨论了多孔材料厚度(0≤e≤1)和渗透率(10-5≤Da≤10)等参数对管内特性和压力损失的影响.结果表明:利用多孔材料调整流场分布,剪薄边界层厚度,能够有效地增强管内.当Da=10-4时,管内充分发展Nu数最大能够增至空管时5.5倍左右.但管内压力损失随着多孔材料厚度e的增加或Da数的减小而急剧增大.因此在实际应用中,应采用部分填充多孔材料,文中建议最佳的多孔材料厚度e取O.6左右,此时可以得到相当程度的强化,而且压力损失控制在可接受的范围内.","authors":[{"authorName":"杨卫卫","id":"9999a38d-15f2-4a40-9446-07f14a3875fe","originalAuthorName":"杨卫卫"},{"authorName":"何雅玲","id":"2ee04d6e-d9ec-45ec-a47f-6801354665d4","originalAuthorName":"何雅玲"},{"authorName":"黄竞","id":"6735a84e-c8c7-4672-9779-7335eebabedf","originalAuthorName":"黄竞"},{"authorName":"赵春凤","id":"68da16e8-0e30-438a-80d7-e1d7c7e5d7ec","originalAuthorName":"赵春凤"},{"authorName":"陶文铨","id":"f4acbaed-f18e-4c57-8919-ca10860bbadd","originalAuthorName":"陶文铨"}],"doi":"","fpage":"104","id":"350f568f-2b4e-4e34-b14b-45b7bda3b5c7","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"159e9ef8-d16a-4465-b084-376cd1d23355","keyword":"多孔材料","originalKeyword":"多孔材料"},{"id":"a02e95a0-a098-48c4-9b15-8cd477c695a1","keyword":"强化","originalKeyword":"强化换热"},{"id":"350ea382-26e7-4987-86e2-a7e821eddd1a","keyword":"数值研究","originalKeyword":"数值研究"}],"language":"zh","publisherId":"gcrwlxb200701034","title":"多孔材料强化管内对流的数值研究","volume":"28","year":"2007"},{"abstractinfo":"采用长×宽×厚为10 mm×10 mm×0.5 mm的硅片来模拟实际芯片散热,通过干腐蚀技术在其表面加工出宽×高分别为50μm×60μm,50μm×120μm的方柱微结构,实验研究了方柱微结构在射流冲击下的流动沸腾热性能。过冷度为25℃和35℃,横流速度V_c为0.5,1.0,1.5 m/s,喷射速度V_j为0~2 m/s,冷却工质为FC-72。实验结果和同工况下的光滑表面作了对比。结果表明,方柱微结构由于面积的增加从而表现出优于光滑表面的强化热性能,增加过冷度和提高V_c以及V_j都提高了芯片在高热流密度下的热性能,但随着V_c的增加,射流冲击的强化作用减弱,低流动高喷射的强化效果最为明显。方柱肋片效率随着热流密度的增加而减小,随着V_c(V_j)增加,方柱肋片效率也逐渐下降,但降幅随着V_c的增加而减小。","authors":[{"authorName":"张永海","id":"6b072d62-401e-4182-9790-2621eef096e9","originalAuthorName":"张永海"},{"authorName":"魏进家","id":"9be7123a-e76d-47c3-b681-707b78719448","originalAuthorName":"魏进家"},{"authorName":"郭栋","id":"57a489a7-407c-40d2-9cff-46b99657f4fd","originalAuthorName":"郭栋"}],"doi":"","fpage":"973","id":"8b6e9189-759f-482a-9d18-f045571b007a","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"15676cb3-1fa0-412e-8cf1-a17b934b9351","keyword":"强化","originalKeyword":"强化换热"},{"id":"d695aa88-8a0e-482d-834f-75bf1c2c90c2","keyword":"高热流密度","originalKeyword":"高热流密度"},{"id":"a4e5fd23-0018-4069-b6f0-56481342764e","keyword":"射流冲击","originalKeyword":"射流冲击"},{"id":"f4211241-d5d2-4fcc-aba7-862b93e99e49","keyword":"方柱微结构","originalKeyword":"方柱微结构"},{"id":"ec947aad-049a-48e2-952a-e8a8757ed310","keyword":"肋片效率","originalKeyword":"肋片效率"}],"language":"zh","publisherId":"gcrwlxb201206017","title":"方柱微结构表面射流-流动沸腾强化","volume":"33","year":"2012"},{"abstractinfo":"本文对水和空气流过紫铜微细板翅结构中的对流进行了实验研究,并与相近孔隙率的烧结多孔介质中的对流进行比较.结果表明:在本文实验参数范围内,与空槽道相比,该微细板翅结构使水的对流增强9倍以上,使空气的对流增强了15~30倍;与相近孔隙率的锡青铜烧结多孔结构相比,该微细板翅结构中的流动阻力大大减小,而对流热能力却增强.","authors":[{"authorName":"姜培学","id":"c0f7b76b-8650-4414-8ed3-5b197df5211c","originalAuthorName":"姜培学"},{"authorName":"胥蕊娜","id":"703c3e58-bcbe-4925-8dbf-04af9f7b4e8e","originalAuthorName":"胥蕊娜"},{"authorName":"李勐","id":"cfaa3d6e-831d-49ca-8d13-458cf9a5ae96","originalAuthorName":"李勐"}],"doi":"","fpage":"484","id":"a81d0273-ba77-4ac6-a58d-7151af9b6275","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"71442d38-8545-4934-a357-a72f5a8fa2cc","keyword":"微细板翅","originalKeyword":"微细板翅"},{"id":"6bc280e1-8175-4ff7-b7d0-3fe000ba17f9","keyword":"实验研究","originalKeyword":"实验研究"},{"id":"24538a04-3c67-4352-a798-7ffd0a2f1992","keyword":"对流","originalKeyword":"对流换热"}],"language":"zh","publisherId":"gcrwlxb200303036","title":"微细板翅结构强化对流实验研究","volume":"24","year":"2003"}],"totalpage":3046,"totalrecord":30459}