The influence of strain rate and temperature on the tensile behavior of as-cast and HIPed NiAl-9Mo eutectic alloywas investigated in the temperature range of 700~950℃ and over a strain rate range from 2.08×10-4 s-1 to2.08×10-2 s-1. The results indicate that HIP process causes an enhancement in ductility and a decrease in ultimatetensile strength (UTS), yield strength (YS), average strain hardening rate as well asa drop in brittle to ductiletransition temperature(BDTT) under the same condition. lt is noticed that the BDTT of as-cast NiAl-9Mo is moredependent on strain rate than that of HIPed one. The brittle to ductile transition process of the alloy is related toa sharp drop in strain hardening rate. Regardless of strain rate, the fracture morphology changes from cleavage inNiAl phase and debonding along NiAl/Mo interface below the BDTT to microvoid coalescence above BDTT. Theapparent activation energy of the BDT of HIPed and as-cast material are calculated to be 327 and 263 k J/mol,respectively, suggesting that the mechanism is associated with lattice diffusion in NiAl phase.
参考文献
[1] | R.R. BOWMAN;A.K. MISRA;S.M. ARNOLD .Processing and Mechanical Properties of A1_2O_3 Fiber-Reinforced NiAl Composites[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,1995(3):615-628. |
[2] | C Y Liu;S M Jang;J M Yang;R A Amato .[J].Materials Science and Engineering,1995,A191:49. |
[3] | H P Chiu;J M Yang;P A Arnato .[J].Materials Science and Engineering,1995,A203:81. |
[4] | R Johnson;X F Chen;B F Oliver;R D Noebe and J D Whittenberger .[J].Intermetallics,1995,3:99. |
[5] | J L Walter;H E Cline .[J].Metallurgical and Materials Transactions,1973,4:33. |
[6] | P R Subramanian;M G Mendiratta;D B Mirales .[J].Metallurgical and Materials Transactions,1994,25:2769. |
[7] | A Misra;Z L Wu;M T Kush;R Gibala.[J].Material Science and Engineering,1997:75. |
[8] | R S Chen;J T Guo;J Y Zhou .[J].Materials Letters,2000,42:758. |
[9] | X.H. Du;J.T. Guo;B.D. Zhou .Superplastic behavior in pseudo-eutectic NiAl-9Mo alloy[J].Materials Letters,2002(6):442-447. |
[10] | F Ebrahimi;T G Hoyle .[J].Acta Materialia,1997,45:4193. |
[11] | M R Fox;A K Ghosh .[J].Materials Science and Engineering,1999,A259:267. |
[12] | Padu Ramasundram .Rerndy Bowman and Wole oboyejo:Mater[J].Science and Engineering,1998,A248:132. |
[13] | A Ball;R E Smallmam .[J].Acta Materialia,1966,14:1549. |
[14] | M Khantha;D P Pope;V Vitek .[J].Scripta Metallurgica et Materialia,1994,31:1349. |
[15] | M Khantha .[J].Scripta Metallurgica et Materialia,1994,31:1355. |
[16] | G W Groves;A Kelly .[J].Plilos Mag,1969,19:977. |
[17] | B K Rad;M Dao;J Asaro .[J].Philosophical Magazine,1995,71:567. |
[18] | Dongdao JIANG;Jianting GUO .[J].Journal of Materials Science and Technology,1998,14:331. |
[19] | J D Whittenberger .[J].Journal of Materials Science,1987,22:394. |
[20] | J D Whittenberger;M V Nathal;S V Raj;V M Pathare .[J].Materials Letters,1991,11:267. |
[21] | Yihui QI;Jianting GUO;Chuanyong CUI;Gusong LI .[J].金属学报,2001(37):937. |
[22] | C Y Cui;Y X Chen;J T Guo;Y H Qi and H Q Ye .[J].Materials Science and Engineering,2002,A325:186. |
[23] | S V Raj;R D Noebe;R Bowman .[J].Scripta Materialia,1989,23:2049. |
[24] | B Zeumer;G Sauthoff .[J].Intermetallics,1998,6:451. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%