欢迎登录材料期刊网

材料期刊网

高级检索

动态再结晶对镁合金的影响已受到广泛关注.阐述变形温度、变形速率、变形程度以及稀土元素等因素对镁合金动态再结晶的影响,综述镁合金动态再结晶的5种再结晶机制.对镁合金动态再结晶的研究方向进行了展望.

参考文献

[1] Mordike B L;Ebert T .Magnesium-properties-applications-potential[J].Materials Science and Engineering A,2001,302(01):37-45.
[2] 俞汉清;陈金德.金属塑性成形原理[M].北京:机械工业出版社,1998:23-25.
[3] N. V. Ravi Kumar;J. J. Blandin;C. Desrayaud .Grain refinement in AZ91 magnesium alloy during thermomechanical processing[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):150-157.
[4] J.C. Tan;M.J. Tan .Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):124-132.
[5] 杨续跃,孙争艳,张雷.室温多向多道次压缩变形制备亚微米和纳米级镁合金[J].金属学报,2010(05):607-612.
[6] 刘楚明,刘子娟,朱秀荣,周海涛.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006(01):1-12.
[7] 刘庆.镁合金塑性变形机理研究进展[J].金属学报,2010(11):1458-1472.
[8] ZHAO Xin,ZHANG Kui,LI Xinggang,LI Yongjun,HE Qingbiao,SUN Jianfeng.Deformation behavior and dynamic recrystallization of Mg-Y-Nd-Gd-Zr alloy[J].稀土学报(英文版),2008(06):846-850.
[9] Yi SB;Zaefferer S;Brokmeier HG .Mechanical behaviour and microstructural evolution of magnesium alloy AZ31 in tension at different temperatures[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1-2):275-281.
[10] 陈振华,许芳艳,傅定发,夏伟军.镁合金的动态再结晶[J].化工进展,2006(02):140-146.
[11] 何运斌,潘清林,覃银江,刘晓艳,李文斌,Yu-lung CHIU,J. J. J. CHEN.ZK60镁合金热变形过程中的动态再结晶动力学[J].中国有色金属学报,2011(06):1205-1213.
[12] Fatemi-Varzaneh S M;Zarei-Hanzaki A;Beladi H .Dynamic recrystallization in AZ31 magnesium alloy[J].Materials Science and Engineering A,2007,456:52-57.
[13] Maksoud, IA;Ahmed, H;Rodel, J .Investigation of the effect of strain rate and temperature on the deformability and microstructure evolution of AZ31 magnesium alloy[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):40-48.
[14] Barnett M R.Recrystallization during and following hot working of magnesium alloy AZ31[J].Materials Science Forum,2003:419-422.
[15] Yan Lou;Luoxing Li;Jia Zhou .Deformation behavior of Mg-8Al magnesium alloy compressed at medium and high temperatures[J].Materials Characterization,2011(3):346-353.
[16] 赵娟妮,冯再新.变形程度对铸态AZ31镁合金动态再结晶的影响[J].热加工工艺,2010(16):60-62.
[17] 张星,李保成,张治民.温变形对AZ31镁合金组织的影响[J].塑性工程学报,2004(03):52-54.
[18] K. Hantzsche;J. Bohlen;J. Wendt;K.U. Kainer;S.B. Yi;D. Letzig .Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets[J].Scripta materialia,2010(7):725-730.
[19] 杨续跃,张雷,姜育培,朱亚坤.Mg-Y及AZ31镁合金高温变形过程中微观织构的演化[J].中国有色金属学报,2011(02):269-275.
[20] S.R.AGNEW;M.H.YOO;C.N.TOME .APPLICATION OF TEXTURE SIMULATION TO UNDERSTANDING MECHANICAL BEHAVIOR OF Mg AND SOLID SOLUTION ALLOYS CONTAINING Li OR Y[J].Acta materialia,2001(20):4277-4289.
[21] Cottam R;Robson J;Lorimer G;Davis B .Dynamic recrystallization of Mg and Mg-Y alloys: Crystallographic texture development[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):375-382.
[22] 李再久,金青林,蒋业华,周荣.Ce对热轧AZ31镁合金动态再结晶及织构的影响[J].金属学报,2009(08):924-929.
[23] M.-X. Zhang;P. M. Kelly .Morphology and crystallography of Mg_(24)Y_5 precipitate in Mg-Y alloy[J].Scripta materialia,2003(4):379-384.
[24] 袁亲松,赵平,赵亮.Y对铸态Mg-Li合金显微组织和力学性能的影响[J].铸造,2009(05):494-497.
[25] 王迎新 .Mg-Al合金晶粒细化、热变形行为及加工工艺的研究[D].上海交通大学,2006.
[26] Galiyev A M;Kaibyshev R O;Gottstein G.Grain refinement of ZK60 magnesium alloy during low temperature deformation[A].TMS(The Minerals,Metal & Materials Society),2002:181-185.
[27] Zhiyi Liu;Song Bai;SukBong Kang .Low-temperature dynamic recrystallization occurring at a high deformation temperature during hot compression of twin-roll-cast Mg-5.51Zn-0.49Zr alloy[J].Scripta materialia,2009(6):403-406.
[28] Oleg Sitdikov;Rustam Kaibyshev .Dynamic recrystallization in pure magnesium[J].Materials transactions,2001(9):1928-1937.
[29] F. Montheillet;O. Lurdos;G. Damamme .A grain scale approach for modeling steady-state discontinuous dynamic recrystallization[J].Acta materialia,2009(5):1602-1612.
[30] D.G. Cram;H.S. Zurob;Y.J.M. Brechet .Modelling discontinuous dynamic recrystallization using a physically based model for nucleation[J].Acta materialia,2009(17):5218-5228.
[31] H.J. McQueen .Development of dynamic recrystallization theory[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(0):203-208.
[32] Bernard, P.;Bag, S.;Huang, K.;Logé, R.E. .A two-site mean field model of discontinuous dynamic recrystallization[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(24):7357-7367.
[33] Wang, L.;Kim, Y.M.;Lee, J.;You, B.S. .Effect of magnesium carbonate on microstructure and rolling behaviors of AZ31 alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(3):1485-1490.
[34] Serra A;Bacon D J .Computer simulation of twinning dislocation in magnesium using a Many-Body potential[J].Philosophical Magazine A:Physics of Condensed Matter:Structure,Defects and Mechanical Properties,1991,63(05):1001-1012.
[35] Yin DL;Zhang KF;Wang GF;Han WB .Warm deformation behavior of hot-rolled AZ31 Mg alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):320-325.
[36] Del Valle J A;Perez-Prado M T;Ruano O A .Texture evolution during large-st rain hot rolling of the Mg AZ61[J].Materials Science and Engineering A,2003,355(1/2):68-78.
[37] M. T. Perez-Pardo;J. A. del Valle;O. A. Ruano .Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling[J].Scripta materialia,2004(5):667-671.
[38] Ion S E;Humphreys F J;White S H .Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium[J].Acta Metallurgica,1982,30(10):1909-1919.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%