欢迎登录材料期刊网

材料期刊网

高级检索

以50%~90%(体积分数)甘油水溶液为电解液,研究304不锈钢表面液相等离子体电解快速渗碳工艺;分析不同甘油浓度和电压下渗碳层的显微组织、相组成和显微硬度.结果表明,随甘油浓度的提高,渗透电压上升,渗碳层厚度增加,渗碳层硬度增大,最大硬度达到762HV;且渗碳层中固溶碳的奥氏体(γC)含量急剧增加,但碳化物含量降低.在80%(体积分数)甘油水溶液和电压350 V工艺条件下获得的渗碳层质量较好.

@@@@The rapid carburizing process of plasma electrolytic saturation in 50%?90% (volume fraction) glycerin aqueous solution on 304 stainless steel surface was investigated. The microstructure, phase component and microhardness of carburizing layers at different glycerin concentrations and voltages were analyzed. The results show that by increasing the glycerin concentration, the saturation voltage is improved, meanwhile the thickness and microhardness of carburizing layer are increased, and the maximum microhardness is up to 762HV. In addition, the expanded austenite (γC) content in the carburizing layer increases greatly with the increase of glycerin concentration, but the carbide content reduces correspondingly. It is found that the carburizing layer obtained at 350 V and 80% glycerin (volume fraction) has better property.

参考文献

[1] 郦振声;杨明安.现代表面工程技术[M].北京:机械工业出版社,2007:252-280.
[2] NIE Xue-yuan;HAO Qing-kai;WEI Jia-mei .A novel modification technique for metal surface[J].Journal of Wuhan University of Technology:Materials Science Edition,1996,11:28-35.
[3] A. L. Yerokhin;X. Nie;A. Leyland;A. Matthews;S. J. Dowey .Plasma electrolysis for surface engineering[J].Surface & Coatings Technology,1999(2/3):73-93.
[4] S. F. Luk;T. P. Leung;W. S. Miu;I. Pashby .A study of the effect of average preset voltage on hardness during electrolytic surface-hardening in aqueous solution[J].Journal of Materials Processing Technology,1999(1/3):245-249.
[5] TAHERI P;DEHGHANIAN C;ALIOFKHAZRAEI M;ROUHAGHDAM A S .Nanocrystalline structure produced by complex surface treatments:Plasma electrolytic nitrocarburizing,boronitriding,borocarburizing,and borocarbonitriding[J].Plasma Processes and Polymer,2007,4(z1):721-727.
[6] 田占军,李杰,沈德久,王玉林,刘凯.液相等离子体电解渗碳、渗氮及其碳氮共渗技术[J].电镀与涂饰,2006(02):53-56.
[7] 潘红梅,何翔.等离子体快速渗氮技术的实现[J].中南民族大学学报(自然科学版),2007(02):65-68.
[8] Tarakci M;Korkmaz K;Gencer Y;Usta M .Plasma electrolytic surface carburizing and hardening of pure iron[J].Surface & Coatings Technology,2005(2/3):205-212.
[9] F. Cavuslu;M.Usta .Kinetics and mechanical study of plasma electrolytic carburizing for pure iron[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2011(9):4014-4020.
[10] PANG Hua,LV Guo-Hua,CHEN Huan,WANG Xin-Quan,ZHANG Gu-Ling,YANG Si-Ze.Microstructure and Corrosion Performance of Carbonitriding Layers on Cast Iron by Plasma Electrolytic Carbonitriding[J].中国物理快报(英文版),2009(08):278-280.
[11] Nie X;Wang L;Yao ZC;Zhang L;Cheng F .Sliding wear behaviour of electrolytic plasma nitrided cast iron and steel[J].Surface & Coatings Technology,2005(5/6):1745-1750.
[12] De-Jiu Shen;Yu-Lin Wang;Philip Nash;Guang-Zhong Xing .A novel method of surface modification for steel by plasma electrolysis carbonitriding[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1-2):240-243.
[13] C. Tsotsos;A. L. Yerokhin;A. D. Wilson;A. Leyland;A. Matthews .Tribological evaluation of AISI 304 stainless steel duplex treated by plasma electrolytic nitrocarburising and diamond-like carbon coating[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2002(9/10):986-993.
[14] Nie X.;Wilson A.;Yerokhin AL.;Leyland A.;Matthews A.;Tsotsos C. .Characteristics of a plasma electrolytic nitrocarburising treatment for stainless steels[J].Surface & Coatings Technology,2001(2/3):135-142.
[15] Yerokhin AL.;Tsotsos C.;Wilson AD.;Nie X.;Matthews A.;Leyland A. .Duplex surface treatments combining plasma electrolytic nitrocarburising and plasma-immersion ion-assisted deposition[J].Surface & Coatings Technology,2001(0):1129-1136.
[16] 薛文斌,金乾,朱庆振,吴晓玲.不锈钢在甘油体系中等离子体电解渗碳层特性研究[J].航空材料学报,2010(04):38-42.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%