欢迎登录材料期刊网

材料期刊网

高级检索

采用粉末冶金法在高温热压炉中制备金刚石/铜复合材料,研究了钛镀层、烧结温度、金刚石颗粒体积分数对金刚石/铜复合材料热导率的影响。结果表明:钛镀层能改善金刚石/铜复合材料的界面浸润性,降低孔隙率,提高热导率。烧结温度低于980℃时,烧结驱动力不足,致使金刚石/铜复合材料的致密度下降,热导率降低;烧结温度高于980℃时,由于铜和金刚石的热膨胀性能相差较大,冷却过程中铜和金刚石颗粒容易在界面处分离,致使金刚石/铜复合材料的致密性和热导率降低。随着高热导金刚石颗粒体积分数的增加,铜不能充分填充金刚石颗粒之间的孔隙,降低了金刚石/铜复合材料的致密度,致使热导率先增加后降低。

Diamond/Cu composites were fabricated by powder metallurgy in a hot pressing furnace. The impacts of the titanium film, sintering temperature and volume fraction of diamond particles on the thermal conductivity of diamond/Cu composites were investigated. The results show that the titanium film can improve the interfacial soakage, decrease porosity and increase the thermal conductivity of diamond/Cu composites. When the sintering temperature was below 980 ℃, it can not make diamond/Cu composites get enough sintering driving force, resulting in low relative density and thermal conductivity. When the sintering temperature was above 980 ℃, it can cause the interfaces to break away because of the large difference of thermal expansion between diamond particles and copper, and can make the relative density and thermal conductivity of diamond/Cu composites decrease. The increasing of the diamond particle volume fraction can cause the copper to insufficiently fill the porosity between diamond particles, and decrease the relative density of diamond/Cu composites, which results in the increasing first and then decreasing of the thermal conductivity of diamond/Cu composites.

参考文献

[1] 童震松, 沈卓身. 金属封装材料的现状及发展 [J]. 电子与封装, 2005, 5(3): 6-14.
[2] 黄 强, 顾明元. 电子封装用金属基复合材料的研究现状 [J]. 电子与封装, 2003, 3(2): 22-25.
[3] Tummala R R, Rymaszewski E J. Microelectronics packaging handbook [M]. New York: Van Nostrand Reinhold, 1989: 277-280.
[4] Scott O M, Nicholas M. The wetting and bonding of diamonds by copper-base binary alloys [J]. J Mater Sci, 1975, 10: 1833-1840.
[5] Schubert T, Ciupiski L, Zieliński W, et al. Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink application [J]. Scripta Materialia, 2008, 58: 263-266.
[6] Katsuhito Y, Hideaki M. Thermal properties of diamond/copper composite material [J]. Microelectronics Reliability, 2004, 44: 303-308.
[7] Kidalov S V, Shakhov F M. Thermal conductivity of diamond composites [J]. Materials, 2009, 2: 2467-2495.
[8] 赵玉成, 邹 芹, 闫 宁, 等. 真空微蒸发镀覆工艺参数对镀层质量及金刚石性能的影响 [J]. 金刚石与磨料磨具工程, 2006, 155(5): 17-19.
[9] Hasselman D P H, Johnson L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance [J]. Compos Mater, 1987, 21: 508-515.
[10] 褚 克. 高导热复合材料导热性能的研究 . 北京: 北京科技大学, 2010.
[11] 马双彦, 王恩泽, 鲁伟员, 等. 金刚石/铜复合材料热导率的研究 [J]. 材料热处理技术, 2008, 37(4): 36-38.
[12] Molina J M, Prieto R, Narciso J. The effect of porosity on the thermal conductivity of Al-12 wt% Si/SiC composites [J]. Scipta Mater, 2009, 60: 582-585.
[13] Maxwell J C. A treatise on electricity and magnetism [M]. Oxford: Oxford University Press, 1904.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%