欢迎登录材料期刊网

材料期刊网

高级检索

对超低氧试验钢精炼过程中镁铝尖晶石的形成机制和生成热力学计算分析表明:1873K时,MgO-A12O3二元系夹杂物中MgO的质量分数超过17%时就能生成镁铝尖晶石;采用高碱度、硼((CaO))/ω((A12O3))≈1、强还原性精炼顶渣对铝终脱氧钢液进行LF精炼时,在LF精炼中前期就实现A120。向MgO·A12O3尖晶石的转变;钢液中的镁则是实现A12O3向MgO·A12O3尖晶石转变的中介和桥梁。而钢中镁含量是由酸溶铝控制的。因此,保持钢液中足够的铝含量是镁铝尖晶石生成的前提。生产过程中,当钢液的ω([A1])达到0.03%时,ω([Mg])只需要1.32×10^-7。以上就能生成MgO·Al2O3尖晶石。

The analysis and calculation to the formation mechanism and producing thermodynamics of magnesia-alumina spinel in refining process of ultra-low oxygen experimental steel shows that magnesia-alumina spinel can be formed when the contents of w((MgO)) exceeds 17% in MgO-A12 03 binary system in 1873 K, and the AI2 03 inclusions can transform to magnesia-alumina spinel in front of middle period of LF refining when the aluminium deoxidation molten steel is refined by high basicity and ω((CaO))/ω((A12 03 )) ≈ 1 and strong reducibility top slag in LF refining. The magnesium in molten steel is the medium and bridge of realizing A1203 to magnesia-alumina spinel, but the w([Mg]) is controlled by acid-soluble aluminium. Therefore keeping sufficient aluminium in molten steel is the precondition of producing magnesia-alumina spinel. Only more than 1.32 × 10 7 of w([Mg]) can produce magnesia alumina spinel when ω([AI]) exceeds 0. 03% in productive process.

参考文献

[1] hoh H;Hino M;Ban-ya S .Thermodynamics on the Forma-tion of Spinel Nonmetallic in Liquid Steel[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1997,28B(10):953.
[2] Saxena S K.Production of Ultra-Clean Steels With Better Mechanical Properties With Magnesium Treatment[A].Warrendale,PA:Iron and Steel Soc of AIME,1996:89.
[3] Frank S;Bruce D;Whitmore C .Method of Deoxidizing Metals[P].US,3304169,1967-02-14.
[4] Mapelli C.;Nicodemi W. .Control of -inclusions in a resulphurised steel[J].Steel Research,2000(5):161-168.
[5] Ohta H;Suito H .Calcium and Magnesium Deoxidation in Fe-Ni and Fe-Cr Alloys Equilibrated With CaO-AI203 and CaO-A1203-MgO Slags[J].ISIJ International,2003,43(09):1293.
[6] Sakai H.;Suito H. .Liquid Phase Boundaries at 1873 K in the Ternary CaO-Al_2O_3 MO_x(MO_x: MgO, ZrO_2) and CaO-SiO_2-MO_x(MO_x: TiO_2, MgO, Al_2O_3) Systems[J].ISIJ International,1996(2):138-142.
[7] K. Beskow;J. Jia;C. H. P. Lupis .Chemical characteristics of inclusions formed at various stages during the ladle treatment of steel[J].Ironmaking & Steelmaking: Products and applications,2002(6):427-435.
[8] Haddock J;T Hussain I;Fox A G et al.New MgO-CaO Based Reagent for Ladle Treatment of Steel[J].Ironmaking and Steelmaking,1994,21(06):479.
[9] K. Beskow;N. N. Tripathi;M. Nzotta .Impact of slag-refractory lining reactions on the formation of inclusions in steel[J].Ironmaking & Steelmaking: Products and applications,2004(6):514-518.
[10] S. Riaz;K. C. Mills;K. Bain .Experimental examination of slag/refractory interface[J].Ironmaking & Steelmaking: Products and applications,2002(2):107-113.
[11] Ohta H;Suito H .Activities in CaO-MgO-Al_22 O_3 Slags and De-oxidation Equilibria of A1,Mg and Ca[J].ISIJ International,1996,36(08):983.
[12] Itoh H;Hino M;Ban-Ya S .Thermodynamics on the Forma-tion of Spinel Nonmetallic Inclusion in Liquid Steel[J].Metal-lurgical and Materials Transaction B,1997,28B(10):953.
[13] C Wagner.Thermodynamics of Alloys[M].Cambridge:Ad-dison-Wesley,MA,1952
[14] L S Darken.Thermodynamics of Binary Metallic Solutions[J].Transactions of the Metallurgical Society of AIME,1967(239):80.
[15] 伊束裕恭;日野光π葛谷志郎 .溶铁のA1脱酸平衡の再秤佰[J].铁と钢,1997,83(12):773.
[16] Lupis C H.Chemical Thermodynamics of Materials[M].New York:Elsevier Science Publishing Co.Inc,1983
[17] S-W Cho;H Suito .Assessment of Calcium-Oxygen Equilibri-um in Liquid Iron[J].ISIJ International,1994,34(03):265.
[18] K Fujii;T Nagasaka;M Hino .Activities of the Constituents in Spinel Solid Solution and Free Energies of Formation of MgO,MgO.AlzO3[J].ISIJ International,2000,40(11):1059.
[19] M Allibert;H Gaye;J Geiseler.Slag Atlas[M].Germany:VDEh,1995
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%