{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以红柱石(≤0.5和≤0.074 mm)、特级矾土(≤0.088 mm)、石英粉、生黏土粉、碳化硅粉为主要原料制备了红柱石砖用红柱石耐火泥浆,研究了活性α-Al2 O3微粉加入量(w)分别为0、2%、4%、6%时对耐火泥浆粘接时间、粘接强度和荷重软化温度的影响。结果表明:1)活性α-Al2 O3微粉的加入会延长耐火泥浆的粘接时间,并提高荷重软化温度Tmax、T0.6和T2;其加入量为4%(w)时,烘后和1400℃烧后的常温抗折粘接强度达到最大;2)所研制的红柱石耐火泥浆在工业应用中,施工性能和使用性能均满足客户要求。","authors":[{"authorName":"喻燕","id":"0e263999-2199-4602-b39c-a2012faac1a9","originalAuthorName":"喻燕"},{"authorName":"徐勇","id":"713721ba-7bbc-4ef5-82b7-a051f50074fd","originalAuthorName":"徐勇"},{"authorName":"沈明科","id":"0aa126f5-820f-41e8-a3e3-2cad7615801c","originalAuthorName":"沈明科"},{"authorName":"何波","id":"12c7337f-7c2b-455a-bc87-0de850413752","originalAuthorName":"何波"},{"authorName":"马铮","id":"02d45ab8-b1f5-4229-84c5-de9d8d6d6c31","originalAuthorName":"马铮"}],"doi":"10.3969/j.issn.1001-1935.2016.03.016","fpage":"223","id":"c6633c53-e8a9-4e34-9e0e-fa98a3eaa087","issue":"3","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"96dd68ae-6cfc-4856-997e-d5a30f741b7a","keyword":"红柱石","originalKeyword":"红柱石"},{"id":"0443ce54-95d5-4e41-98ef-9dfa063e3788","keyword":"耐火泥浆","originalKeyword":"耐火泥浆"},{"id":"2cf64ec6-a7ab-4de5-a40d-eb6b4298b881","keyword":"活性α-Al2O3微粉","originalKeyword":"活性α-Al2O3微粉"},{"id":"2e021c75-f9a7-4720-94a1-d869426266a8","keyword":"荷重软化温度","originalKeyword":"荷重软化温度"}],"language":"zh","publisherId":"nhcl201603018","title":"活性α-Al2O3微粉加入量对红柱石耐火泥浆性能的影响","volume":"50","year":"2016"},{"abstractinfo":"以电熔白刚玉和电熔致密刚玉为主要原料,研究了活性α-Al2O3微粉对RH浸渍管浇注料的施工性能(振动流动度)、强度及抗渣性能的影响.研究表明:添加适量活性α-Al2O3微粉能提高RH浸渍管用Al2O3-MgO浇注料在高、中、低温下处理后的强度,并且能有效地提高浇注料的抗渣性能.但活性α-Al2O3微粉对浇注料的施工性能不利,且施工温度越高,其影响越显著.","authors":[{"authorName":"赵惠忠","id":"a8cbef54-f5ee-4613-b02a-3f436d8d8193","originalAuthorName":"赵惠忠"},{"authorName":"蓝振华","id":"0ac59f1b-c110-4b8c-8bcf-f731e5a85369","originalAuthorName":"蓝振华"},{"authorName":"汪厚植","id":"7efc4adb-0dff-40b5-8b61-f82e2f4490f0","originalAuthorName":"汪厚植"},{"authorName":"张文杰","id":"8121a233-a5d3-4fb6-a303-6d2909d4213c","originalAuthorName":"张文杰"},{"authorName":"慕松林","id":"466bb9b8-4d9d-4f3b-a1ba-f7b9934e5aad","originalAuthorName":"慕松林"},{"authorName":"袁松高","id":"22736024-1b82-4d6a-8952-b4c9c95a9e2d","originalAuthorName":"袁松高"},{"authorName":"赵俊峰","id":"f4c4a52a-496d-409c-99a4-2c0b297ac0de","originalAuthorName":"赵俊峰"}],"doi":"10.3969/j.issn.1001-1935.2003.04.001","fpage":"187","id":"22a47bf8-7843-4346-8f68-ab5d07622307","issue":"4","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"514a6903-ea10-4213-9001-f67aa7e536bf","keyword":"RH浸渍管","originalKeyword":"RH浸渍管"},{"id":"5a0fc9cb-8d11-46ca-bbb5-ee4a18f9165f","keyword":"浇注料","originalKeyword":"浇注料"},{"id":"c14fd4a6-897e-41e8-9550-bcf580195e6e","keyword":"活性α-Al2O3微粉","originalKeyword":"活性α-Al2O3微粉"},{"id":"1a5d638f-4603-4d15-b903-e23f376c3ec0","keyword":"施工性能","originalKeyword":"施工性能"},{"id":"4a31eca4-35e3-4816-85dd-0e8bd0a220aa","keyword":"耐压强度","originalKeyword":"耐压强度"},{"id":"a0c9b39b-8910-4839-b60c-e4f9201ec76a","keyword":"抗折强度","originalKeyword":"抗折强度"},{"id":"3b473034-78d1-4529-8532-ed2b140e520f","keyword":"抗渣性能","originalKeyword":"抗渣性能"}],"language":"zh","publisherId":"nhcl200304001","title":"活性氧化铝微粉对RH浸渍管浇注料性能的影响","volume":"37","year":"2003"},{"abstractinfo":"将煅烧α-Al2O3、活性α-Al2O2和p-Al2O3三种微粉分别与轻质CaCO3按六铝酸钙(CA6)的化学计量比配料,采用反应烧结法,分别于1 200、1 300、1 400和1 500℃空气气氛中保温3h合成CA6,并研究了不同的Al2O3微粉对合成CA6材料相组成、显微结构及性能的影响.结果表明:由三种不同Al2O3微粉与轻质CaCO3配制的试样,其合成CA6的反应均在1 500℃基本完成,试样中均只有片状CA6,但片状CA6晶体的排列方式稍有不同;由煅烧α-Al2O3微粉和p-Al2O3微粉分别与轻质CaCO3制成的试样,烧后基本全部呈体积收缩,而由活性α-Al2O3微粉与轻质CaCO3合成的试样呈体积膨胀;由活性α-Al2O3微粉与轻质CaCO3合成的试样,其常温耐压强度最高,当试样中只有单相CA6时(1 500℃烧后),其耐压强度可达42.5 MPa;由p-Al2O3微粉与轻质CaCO3合成的试样,其生成CA6的温度最低,显气孔率最高,当试样中只有单相CA6时(1 500℃烧后),其显气孔率最高,可达70.1%;由煅烧α-Al2O3微粉与轻质CaCO3合成的试样,其体积密度最大.","authors":[{"authorName":"刘小林","id":"9aeea791-4e02-4b4b-a6a6-1e2fd4a30ac8","originalAuthorName":"刘小林"},{"authorName":"刘开琪","id":"58408838-0fdb-4352-a7bb-b4b0d2f431eb","originalAuthorName":"刘开琪"},{"authorName":"谢笑虎","id":"17985e7d-a6c7-49be-a210-5d55fd29d9bb","originalAuthorName":"谢笑虎"},{"authorName":"刘永锋","id":"7dd3b372-dc84-4a71-b1c8-8a777d2da53d","originalAuthorName":"刘永锋"},{"authorName":"罗志勇","id":"a00ec1ca-5752-450b-bd9e-28f86ef37c3a","originalAuthorName":"罗志勇"}],"doi":"10.3969/j.issn.1001-1935.2012.03.003","fpage":"174","id":"0b34e285-351e-4cbf-aa53-04133b5edaa3","issue":"3","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"4ca4e8d5-2bb0-4acd-b2ac-30c45a07395c","keyword":"六铝酸钙(CA6)","originalKeyword":"六铝酸钙(CA6)"},{"id":"da3dda2d-8cdd-40c7-aaed-837326f7e292","keyword":"活性α-Al2O3","originalKeyword":"活性α-Al2O3"},{"id":"d8ba1135-1d22-4ef6-af63-9ff959bc72ca","keyword":"煅烧α-Al2O3","originalKeyword":"煅烧α-Al2O3"},{"id":"d6552a9e-8a7a-41e1-9806-176bbfd6fada","keyword":"p-Al2O3","originalKeyword":"p-Al2O3"},{"id":"844f403d-f830-4c5d-9936-7c8e308df54f","keyword":"轻质CaCO3","originalKeyword":"轻质CaCO3"},{"id":"26280f77-469c-4a7b-a30e-a35a8c7bcb60","keyword":"体积收缩率","originalKeyword":"体积收缩率"}],"language":"zh","publisherId":"nhcl201203003","title":"不同Al2O3微粉对合成CA6性能的影响","volume":"46","year":"2012"},{"abstractinfo":"为了提高RH精炼炉用镁铬质耐火材料的使用寿命,以质量分数为80%的电熔镁铬砂(粒度为3~1、≤1、≤0.088 mm)和20%的印度铬矿砂(粒度为≤1和≤0.074 mm)为基础配方,分别用质量分数为2%、4%、6%的活性α-Al2O3微粉(d90=5.376μm)等量取代电熔镁铬砂细粉,外加4%质量分数的亚硫酸纸浆废液为结合剂,经混练、成型、干燥后,分别经1 500、1 600、1 650、1 700和1 750℃热处理,然后检测试样的常温抗折强度、常温耐压强度、烧后永久线变化率、显气孔率、体积密度、高温抗折强度和抗渣性能.结果表明:1)加入α-Al2O3微粉能明显提高试样的常温抗折强度;2)随着α-Al2O3微粉加入量(w)从4%增加到6%,试样的高温抗折强度增加;3)加入6%(w)α-Al2 O3微粉可以降低试样的显气孔率,提高其致密度,进而提高试样的综合性能.","authors":[{"authorName":"朱新伟","id":"20a63e12-673c-46a4-9ac8-3753909931f0","originalAuthorName":"朱新伟"},{"authorName":"邱文冬","id":"b50e51e3-00a1-49a3-9317-fb905b920f51","originalAuthorName":"邱文冬"},{"authorName":"梁永和","id":"f42bd796-01ed-4b4f-9eb4-30cf4d69f4ed","originalAuthorName":"梁永和"},{"authorName":"赵伟","id":"7f0424bf-7a09-4a90-8aec-cd4f066c4cfe","originalAuthorName":"赵伟"},{"authorName":"岳鹏","id":"c86d2133-1766-4565-8f63-7d074f14c17f","originalAuthorName":"岳鹏"},{"authorName":"聂建华","id":"66faa283-f929-43aa-8b2e-7dbb3f92e7d3","originalAuthorName":"聂建华"},{"authorName":"崔任渠","id":"3781a898-3448-45aa-9f88-2b422c5a5a85","originalAuthorName":"崔任渠"}],"doi":"10.3969/j.issn.1001-1935.2013.06.008","fpage":"430","id":"c8fc0241-2ff6-4177-b0e8-4d0556014006","issue":"6","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"da2b5774-67fc-4e29-84a4-9d3357dd0181","keyword":"镁铬材料","originalKeyword":"镁铬材料"},{"id":"3c04e18f-a7f0-4bad-abc6-04bf7d44b972","keyword":"RH精炼炉","originalKeyword":"RH精炼炉"},{"id":"89d7025b-1c1c-43fd-8977-1060a3ba6c51","keyword":"α-Al2O3微粉","originalKeyword":"α-Al2O3微粉"},{"id":"69c65ca8-7b30-46a5-90c9-02f266e3f6f7","keyword":"强度","originalKeyword":"强度"},{"id":"4269f5b3-ede8-4dd9-93d3-2b150b9976b4","keyword":"抗渣渗透性","originalKeyword":"抗渣渗透性"}],"language":"zh","publisherId":"nhcl201306008","title":"α-Al2O3微粉加入量对镁铬材料性能的影响","volume":"47","year":"2013"},{"abstractinfo":"以α-Al2O3微粉为基体,Y(NO3)3水溶液为包裹相,采用液相包裹法进行加钇颗粒表面改性.获得了表面均匀包裹Y2O3的α-Al2O3粉体.将此粉体与Al合金复合制备复合材料.复合材料组织更加均匀.对材料进行力学性能测试,结果表明:改性粉体对Al合金增强效果明显增加,抗拉强度提高27.2%;屈服强度提高33.1%,延伸率提高10.3%.","authors":[{"authorName":"于志强","id":"803d95db-1966-4963-8e21-535be954164b","originalAuthorName":"于志强"},{"authorName":"武高辉","id":"a39dcc3a-2b9a-4182-a1e2-22188b229cac","originalAuthorName":"武高辉"},{"authorName":"孙东立","id":"8fa74dde-9ef3-4d92-97eb-6956829c803e","originalAuthorName":"孙东立"},{"authorName":"姜龙涛","id":"bcdfdb71-1829-433a-954e-66ee46467f91","originalAuthorName":"姜龙涛"}],"categoryName":"|","doi":"","fpage":"1250","id":"bd1096c5-d722-418e-8810-b2f2879199af","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"ba80eb10-b69b-461e-a933-12ca0a7eff89","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"26dc8f70-55d9-4a90-a07d-f0fd12362d2c","keyword":" liquid phase particle coating","originalKeyword":" liquid phase particle coating"},{"id":"8f7323e6-5dea-49cb-a693-00c7890cae51","keyword":" micropowder","originalKeyword":" micropowder"},{"id":"77e4945b-0312-4737-a388-b739c611bcb9","keyword":" Al2O3/Al compos- ite","originalKeyword":" Al2O3/Al compos- ite"},{"id":"c1f0a6dc-0db8-488f-b3b0-c5b13eb7618f","keyword":" microstructure and mechanical properties","originalKeyword":" microstructure and mechanical properties"}],"language":"zh","publisherId":"1000-324X_2003_6_15","title":"Al2O3微粉的表面改性及表征","volume":"18","year":"2003"},{"abstractinfo":"提出了一种快速制备α-Al2O3微粉的方法, 以淀粉为碳源、γ-Al2O3为前体制备了C/γ-Al2O3复合物, 然后在800℃、氧气氛中焙烧制备α-Al2O3微粉. N2物理吸附及SEM分析结果表明, 所制得的α-氧化铝颗粒细小, 约为2μm. 该方法具有焙烧温度低、焙烧时间短的优点, 同时, 淀粉及γ-Al2O3均为廉价的工业原料, 且该方法所需淀粉量较少, 最少仅需0.3g/g γ-Al2O3, 对应的C/γ-Al2O3复合物碳含量约为6wt%, 因而极具工业化应用前景.","authors":[{"authorName":"王培","id":"d65d8f22-910d-4400-bc14-4eef7d284735","originalAuthorName":"王培"},{"authorName":"林莉","id":"aef31d6b-31ce-4647-97ca-d0fe667d15be","originalAuthorName":"林莉"},{"authorName":"朱月香","id":"2db68fac-dc50-4473-984a-fe16c9c6824a","originalAuthorName":"朱月香"},{"authorName":"谢有畅","id":"17275f27-ab1d-4a41-ab29-d7bf83b5425f","originalAuthorName":"谢有畅"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2008.00996","fpage":"996","id":"762d1e04-3d1e-4faa-b50d-9d39c7f5f9d3","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"f4d51fa5-7f1c-4a4f-90b4-ca62d62c00e6","keyword":"超细α-Al2O3粉","originalKeyword":"超细α-Al2O3粉"},{"id":"c7575f22-a7d0-4fd9-8c97-d2f248a413ff","keyword":" starch","originalKeyword":" starch"},{"id":"c04c21da-6d05-4bde-a22a-f40cb8a9e4ac","keyword":" C/γ-Al2O3 composite","originalKeyword":" C/γ-Al2O3 composite"}],"language":"zh","publisherId":"1000-324X_2008_5_4","title":"在氧气中焙烧C/γ-Al2O3复合物快速制备α-Al2O3微粉","volume":"23","year":"2008"},{"abstractinfo":"以α-Al2O3微粉为基体,Y(NO3)3溶液为包裹相,采用液相包裹法进行加钇颗粒表面改性.获得了表面均匀包裹Y2Oa的α-Al2O3粉体.将此粉体与Al合金复合制备复合材料.复合材料组织更加均匀.对材料进行力学性能测试,结果表明:改性粉体对Al合金增强效果明显增加,抗拉强度提高27.2%,屈服强度提高33.1%,延伸率提高10.3%.","authors":[{"authorName":"于志强","id":"ac335e24-afae-4f7f-bcfd-263fc1ab4be2","originalAuthorName":"于志强"},{"authorName":"武高辉","id":"09468c75-c462-41b1-a9b1-e8068bff3052","originalAuthorName":"武高辉"},{"authorName":"孙东立","id":"57dfd35a-3345-4713-81b0-2304360c674a","originalAuthorName":"孙东立"},{"authorName":"姜龙涛","id":"e295c37d-f354-4211-8a60-5f248484f536","originalAuthorName":"姜龙涛"}],"doi":"10.3321/j.issn:1000-324X.2003.06.018","fpage":"1250","id":"bab8d06c-587f-40d2-b7e5-418d43d7e6ff","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"9f83ab2d-1382-4e43-ab53-243dab8a3f2e","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"e5bbbf55-8c80-4432-b286-902817a590d5","keyword":"液相颗粒包裹","originalKeyword":"液相颗粒包裹"},{"id":"9a4cdf4c-4cc5-4e90-9778-8bd5df1d1183","keyword":"微粉","originalKeyword":"微粉"},{"id":"f21d5ca4-8dbd-4f51-8a25-1ca76b7b216b","keyword":"Al2O3/Al复合材料","originalKeyword":"Al2O3/Al复合材料"},{"id":"70c1d40a-602f-4ca4-b7c3-e77be7f0e556","keyword":"组织性能","originalKeyword":"组织性能"}],"language":"zh","publisherId":"wjclxb200306018","title":"Al2O3微粉的表面改性及表征","volume":"18","year":"2003"},{"abstractinfo":"为了研究添加Al2O3微粉对AZ31A镁合金微弧氧化膜特性影响,在不同浓度Al2O3微粉氧化液中对其进行了微弧氧化处理.利用扫描电镜(SEM)观察了微弧氧化膜形貌,能谱仪(EDS)分析了膜层表面Ca、Mg、O、Al元素分布,X射线衍射仪(XRD)分析了相组成,测定了膜厚、硬度和氧化液中Al2O3表面电荷,讨论了改性机理.结果表明,加入Al2O3微粉后,氧化电压随Al2O3添加量增加先增加后降低;氧化膜表面孔洞数量和尺寸减小,膜层表面Ca元素分布逐渐减少,成膜效率降低,膜层致密度和表面疏松层硬度提高,氧化膜主要由MgO和MgO4等相组成.","authors":[{"authorName":"王平","id":"d1af34d7-b050-4426-8e5b-ca10ec8b253b","originalAuthorName":"王平"},{"authorName":"伍婷","id":"e7bb5de0-2a50-464d-b87a-0d6a81e34367","originalAuthorName":"伍婷"},{"authorName":"肖佑涛","id":"9c02e04e-a9f3-41b9-9d2c-dfa716287b92","originalAuthorName":"肖佑涛"},{"authorName":"蒲俊","id":"cc38e2c2-f60f-4d3a-b4bb-93b16c99466c","originalAuthorName":"蒲俊"},{"authorName":"徐明","id":"3a5a19b0-0a5e-4bac-b131-7770f08b1893","originalAuthorName":"徐明"},{"authorName":"向春浪","id":"cb6d8191-03b1-490b-b39e-3a3a1f1163c0","originalAuthorName":"向春浪"},{"authorName":"郭小阳","id":"48d14492-b927-4ab0-86bf-8414a4fc5bc4","originalAuthorName":"郭小阳"}],"doi":"","fpage":"1260","id":"016ecedf-eba7-4628-b198-c496401fdd7c","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"772c4ca6-95d5-49e5-a660-d0696649575d","keyword":"AZ31A","originalKeyword":"AZ31A"},{"id":"591e61d0-5c0a-44e6-a4d2-536aed9f1da6","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"50ef3ee9-8431-44e3-bcea-c6da37b9e653","keyword":"Al2O3微粉","originalKeyword":"Al2O3微粉"},{"id":"b798d578-75bb-41cd-9559-1bc181f40f70","keyword":"改性机理","originalKeyword":"改性机理"}],"language":"zh","publisherId":"xyjsclygc201705018","title":"Al2O3微粉添加量对镁合金微弧氧化膜特性影响","volume":"46","year":"2017"},{"abstractinfo":"提出了一种快速制备α-Al2O3微粉的方法,以淀粉为碳源、γ-Al2O3为前体制备了C/γ-Al2O3复合物,然后在800℃、氧气氛中焙烧制备α-Al2O3微粉.N2物理吸附及SEM分析结果表明,所制得的α-氧化铝颗粒细小,约为2μm.该方法具有焙烧温度低、焙烧时间短的优点,同时,淀粉及γ-Al2O3均为廉价的工业原料,且该方法所需淀粉量较少,最少仅需0.3g/g γ-Al2Oa,对应的C/γ-Al2O3复合物碳含量约为6wt%,因而极具工业化应用前景.","authors":[{"authorName":"王培","id":"3fb042f3-6776-4b53-af3f-cbe075f70b1c","originalAuthorName":"王培"},{"authorName":"林莉","id":"72b32313-b460-4ce7-972a-5c9f9994410a","originalAuthorName":"林莉"},{"authorName":"朱月香","id":"aa7dce2c-9724-47d1-b675-d4da833ddd31","originalAuthorName":"朱月香"},{"authorName":"谢有畅","id":"3c95943c-5982-4652-9741-afe0719188c5","originalAuthorName":"谢有畅"}],"doi":"10.3321/j.issn:1000-324X.2008.05.026","fpage":"996","id":"8be60a11-3141-4eed-8bdb-8c3a58915f03","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"c9623f83-5d3a-4183-973b-db4be8b31689","keyword":"超细α-Al2O3粉","originalKeyword":"超细α-Al2O3粉"},{"id":"64e7e265-ea88-44e2-a08c-a561802f1bc7","keyword":"淀粉","originalKeyword":"淀粉"},{"id":"f63527c5-f193-4c30-bc1e-5b73fa0db0bf","keyword":"C/γ-Al2O3复合物","originalKeyword":"C/γ-Al2O3复合物"}],"language":"zh","publisherId":"wjclxb200805026","title":"在氧气中焙烧C/γ-Al2O3复合物快速制备α-Al2O3微粉","volume":"23","year":"2008"},{"abstractinfo":"以优质白刚玉、高纯富铝尖晶石和α-Al2O3微粉(d50为4.596μm和2.148μm)为主要原料制备了刚玉-尖晶石浇注料,研究了α-Al2O3微粉加入量(质量分数分别为8%、12%和16%)对刚玉-尖晶石浇注料性能的影响.结果表明:1)随α-Al2O3微粉加入量增加,浇注料基质的流动性能提高;α-Al2O3微粉粒度较细时基质的流动性较好,而α-Al2O3微粉较粗时基质的流动性变差.2)增加α-Al2O3微粉加入量,刚玉-尖晶石浇注料的密度增加,强度明显提高,抗渣侵蚀性和抗渣渗透性明显改善,但α-Al2O3微粉加入过多时其抗热震性变差.α-Al2O3微粉的合适加入量为12%.3)与钢包渣相比,LF渣对刚玉-尖晶石浇注料的侵蚀性较大.4)采用优质电熔白刚玉、电熔尖晶石和α-Al2O3微粉,能够生产出性能优良的刚玉-尖晶石浇注料.","authors":[{"authorName":"姚金甫","id":"c7932e21-d830-49f1-a8e3-b50b71bed269","originalAuthorName":"姚金甫"},{"authorName":"张恩甫","id":"51eea3ec-69b8-4c67-840d-f26e9d467bdf","originalAuthorName":"张恩甫"},{"authorName":"田守信","id":"a013dcc6-f421-4b92-9774-c93671a5c244","originalAuthorName":"田守信"}],"doi":"10.3969/j.issn.1001-1935.2008.03.012","fpage":"209","id":"1563ae31-a252-4c9d-bca3-28b519356a91","issue":"3","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"35e84d16-a5f1-4dfd-89f5-63aecb457113","keyword":"浇注料","originalKeyword":"浇注料"},{"id":"c1fe02a1-f9c8-450c-a668-9d194a64c166","keyword":"α-Al2O3微粉","originalKeyword":"α-Al2O3微粉"},{"id":"ceee4266-c8b7-4e33-b4ac-bb9eb15dadd2","keyword":"刚玉","originalKeyword":"刚玉"},{"id":"002d8d9f-6106-40cc-b51c-ba6ee1e10c41","keyword":"尖晶石","originalKeyword":"尖晶石"},{"id":"7d8c8468-f1a9-44f5-8e3f-cd4226a1fb33","keyword":"流动性","originalKeyword":"流动性"}],"language":"zh","publisherId":"nhcl200803012","title":"α-Al2O3微粉对刚玉-尖晶石浇注料性能的影响","volume":"42","year":"2008"}],"totalpage":12369,"totalrecord":123684}