欢迎登录材料期刊网

材料期刊网

高级检索

提出了一种可控超电磁材料Metamatrial与结构,研究了在4~10GHz范围内的电磁波传输系数与单站雷达散射截面(RCS)的电可控特性.对开口谐振环(Split ring resonators,SRRs)和带有p-i-n二极管的金属细线阵列,通过对间断处置有的5个p-i-n二极管施加电压来改变介质和整个结构的电参数的有效特性,从而实现电磁渡的传榆特性控制和此种材料与结构的电控制.应用金属波导理论、ANSOFT HFSS,高、低阻抗表面(HLIS)和辐射边界条件等模拟传输系数和单站雷达散射截面(RCS),得出整个超电磁.Metamatrial材料与结构在谐振频带6.0GHz附近有好的近似导通与截止的控制特性;对于垂直入射的平面波,在不加铁氧体情况下RCS可减小-5dBm,传输系数约-30dB(5.4GHz附近);添加铁氧体其谐振频率将朝低频发生位移,在谐振点附近传输特性表现为更差,而通、断可控 特性表现为传输系数可调范围约-28dB,RCS可调范围约-10dBm.

参考文献

[1] Chambers B.;Ford KL. .Topology for tunable radar absorbers[J].Electronics Letters,2000(15):1304-1306.
[2] Knott E.F.;Lunden C.D. .The two-sheet capacitive Jaumann absorber[J].IEEE Transactions on Antennas and Propagation,1995(11):1339-1343.
[3] A Method of Effective Use of Ferrite for Microwave Absorber[J].IEEE Transactions on Microwave Theory and Techniques,2003(1):238-245.
[4] Mitsuhiro Amanno;Youji Kotsuji .A novel microwave absorber with surface-printed conductive line patterns[J].IEEE Microwave Symposium Digest,2002,2:1193.
[5] Ojima T .Numerical experiments of periodical-patch-loaded absorber by FDTD computayion[J].IEEE Intern Symposium on MEC,2000,2:785.
[6] 聂彦,冯则坤,张秀成,何华辉.FSS在吸波材料中应用的实验研究[J].华中科技大学学报(自然科学版),2004(05):50-52.
[7] 卢俊,高劲松,孙连春.吸波材料与频率选择表面复合的实验研究[J].光机电信息,2003(09):5-8.
[8] Tetsu Soh et al.A basic study of millimeter-wave absorber for two frequency band using transparent resistive films[J].IEEE Intern Symposium on Electromagnetic Compatibility,2003,1:149.
[9] 刘飚,官建国,王琦,张清杰.纳米技术在微波吸收材料中的应用[J].材料导报,2003(03):45-47,58.
[10] Tennant A;Chambers B .A single-layer tunable microwave absorber using an active FSS[J].IEEE Microwave and Eireless Components Lett,2004,14(01):46.
[11] Pendry J.B.;Robbins D.J.;Stewart W.J.;Holden A.J. .Magnetism from conductors and enhanced nonlinear phenomena[J].IEEE Transactions on Microwave Theory and Techniques,1999(11):2075-2084.
[12] De Lustrac A;Gadot F;Akmansoy E et al.High-directivity planar antenna using controllable photonic band gap material at microwave frequencies[J].Applied Physics Letters,2001,78:4196.
[13] Pendry J B et al.Extremely low frequency plasmons in metallic mesostructures[J].Physical Review Letters,1996,76(25):S4773.
[14] Pendry JB.;Robbins DJ.;Stewart WJ.;Holden AJ. .Low frequency plasmons in thin-wire structures[J].Journal of Physics. Condensed Matter,1998(22):4785-4809.
[15] Sigalas MM.;Ho KM.;Soukoulis CM.;Chan CT. .METALLIC PHOTONIC BAND-GAP MATERIALS[J].Physical Review.B.Condensed Matter,1995(16):11744-11751.
[16] Smith D R;Schultz S;Kroll N et al.[J].Applied Physics Letters,1994,65:645.
[17] Pendry, JB;Schurig, D;Smith, DR .Controlling electromagnetic fields[J].Science,2006(5781):1780-1782.
[18] Djermoun A;de Lustrac A;Akmansoy E et al.Negative refraction device with electrically controllable permittivey and negative permeabilty[J].Electronics Letters,2006,42(04):223.
[19] Djermoun A;de Lustrac A;Gadot F.Design and characterization of a controllable left-handed material at microwave frequencies[A].,2005
[20] Steven A Cummer;Bogdan Ioan Popa;David Schurig et al.Full-wave simulations of electromagnetic cloaking structures[J].Physical Review,2006,E74:036621.
[21] Zoran Jaksic;Nils Dalarsson;Milan Maksimovic .Electromagnetic structures containing negative refractive index metamaterials[J].TELSIKS,2005,1:145.
[22] Marques R.;Martel J.;Mesa F.;Medina F. .Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides - art. no. 183901[J].Physical review letters,2002(18):3901-0.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%