功能材料, 2005, 36(7): 1126-1130.
陶瓷靶射频磁控溅射TiO2薄膜的制备和光催化特性
桑敏 1, , 刘发民 2, , 丁芃 3, {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"作为一种典型的航空航天结构,复合材料格栅圆柱筒的轴压稳定性决定了航天器结构的极限承载能力.现有的均匀化等效法和梁-壳有限元法模拟均存在一定的不足.考虑到肋条的局部应力和稳定性问题,将肋条等效为壳单元,提出了全壳有限元法.结合某型号飞行器复合材料格栅承力筒,分别采用这3种方法进行了轴压稳定性研究,同时设计了全尺寸轴压破坏试验.对比数值计算和试验结果得知两者的一致性较好,并且验证了该型号飞行器设计的合理性.均匀化等效法、梁-壳有限元法和全壳有限元法得到的结果与试验值的偏差分别为14.9%、9.5%和5.2%.全壳有限元法精度最高,并且能准确预测结构破坏位置,为同类结构的设计提供了参考.","authors":[{"authorName":"杨颜志","id":"f2f8a257-a2f5-4220-a644-637e3d9cd7ee","originalAuthorName":"杨颜志"},{"authorName":"郑权","id":"deb17f61-a4fe-4e75-ad48-dad9ed5339e9","originalAuthorName":"郑权"},{"authorName":"李昊","id":"2d85fd46-e69c-4403-a056-68ad513aaec1","originalAuthorName":"李昊"},{"authorName":"吕榕新","id":"b683abe1-0064-4216-8406-f345ec4292b2","originalAuthorName":"吕榕新"},{"authorName":"王瑞凤","id":"2b84b65d-df12-4969-abdb-cd459f41a73c","originalAuthorName":"王瑞凤"}],"doi":"10.13801/j.cnki.fhclxb.20140519.001","fpage":"295","id":"51af91b0-00ba-46aa-be02-b40e8dcdab74","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"5e66ed8c-63a0-4fbd-a403-f42de2d7224d","keyword":"复合材料格栅","originalKeyword":"复合材料格栅"},{"id":"04a0045e-6fbc-4cec-8588-c23d87a65ce1","keyword":"圆柱筒","originalKeyword":"圆柱筒"},{"id":"39bb99b9-778d-44e0-b978-9aa263195c85","keyword":"轴压稳定性","originalKeyword":"轴压稳定性"},{"id":"53fc0b32-4844-4a59-a2c5-6aa97df294a6","keyword":"全壳有限元法","originalKeyword":"全壳有限元法"},{"id":"0f8707e2-b5c9-441d-aaa8-50ec444fec01","keyword":"物理试验","originalKeyword":"物理试验"}],"language":"zh","publisherId":"fhclxb201501037","title":"复合材料格栅圆柱筒稳定性数值仿真与试验","volume":"32","year":"2015"},{"abstractinfo":"介绍了格栅复合材料的结构特征及其制备工艺.同时,对复合材料格栅结构分析设计、性能测试和该结构在航空、航天工程中的应用现状进行了概述.","authors":[{"authorName":"王世勋","id":"b18abea1-1edb-4acc-b99f-7b2585b33c50","originalAuthorName":"王世勋"},{"authorName":"石玉红","id":"68159e13-3fc0-4003-b574-3869c1d2eccb","originalAuthorName":"石玉红"},{"authorName":"张希","id":"e49f5f6d-a311-419f-9e2f-f031846fad92","originalAuthorName":"张希"},{"authorName":"季宝锋","id":"c51d2396-be21-43ff-943c-9d93940d3709","originalAuthorName":"季宝锋"},{"authorName":"李雄魁","id":"0049cd06-f182-4486-a8bf-6b208da70e80","originalAuthorName":"李雄魁"}],"doi":"10.12044/j.issn.1007-2330.2017.01.002","fpage":"5","id":"0fed9b95-6f64-49f3-be35-8b847b28df9b","issue":"1","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"e435bddb-69ff-40e9-8f29-e23d3f05d1b3","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"4f908663-b54e-496d-9fbc-56ef750b8c7e","keyword":"格栅结构","originalKeyword":"格栅结构"},{"id":"6a8800d7-e807-4378-9e67-c5da921f1cce","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"6ed232f8-524d-4d5a-9898-6167d7fc6c00","keyword":"分析设计","originalKeyword":"分析设计"},{"id":"eba73f2a-9432-4723-a668-7f7278c1c187","keyword":"性能测试","originalKeyword":"性能测试"}],"language":"zh","publisherId":"yhclgy201701002","title":"复合材料格栅结构研究进展与应用","volume":"47","year":"2017"},{"abstractinfo":"先进复合材料格栅结构(AGS);是一种新型的高性能结构材料,为对其力学性能进行研究,采用玻璃纤维复合材料制备三角形格栅试件.应用电阻式应变传感器对其力学性能进行测试,测试结果与有限元仿真结果基本吻合.在此基础上,分别对正三角形格栅和六边形蜂窝结构进行有限元分析.结果表明:单面蒙皮时,三角格栅结构的抗弯性能优于六边形蜂窝结构:双面蒙皮时,抗弯性能的优劣取决于蒙皮厚度.","authors":[{"authorName":"苟欢敏","id":"c56e28ba-33ca-46f1-89b2-1db8eb1f5987","originalAuthorName":"苟欢敏"},{"authorName":"徐志伟","id":"eb56a41f-7c28-494b-a86a-e564ecb0f0ad","originalAuthorName":"徐志伟"},{"authorName":"李飞","id":"06838ee9-34ae-4694-ae85-7895da95bbc7","originalAuthorName":"李飞"},{"authorName":"陈振英","id":"1709d370-351c-40ef-b787-fe99b8efcb81","originalAuthorName":"陈振英"}],"doi":"10.3969/j.issn.1004-244X.2009.06.007","fpage":"19","id":"9ec46b1d-fa2f-4626-93eb-2a1c8b8c8a7f","issue":"6","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"8c04fc0c-7179-48f4-be88-842ebaffe034","keyword":"格栅结构","originalKeyword":"格栅结构"},{"id":"4b78ad98-01af-439e-9f1f-0990fd5e69f5","keyword":"蜂窝结构","originalKeyword":"蜂窝结构"},{"id":"988afbf6-d4e9-4d32-bfd0-529196fdfd9c","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"b791c19a-2f6b-47cb-b17b-9de146f19ab5","keyword":"有限元分析","originalKeyword":"有限元分析"}],"language":"zh","publisherId":"bqclkxygc200906007","title":"复合材料格栅结构的力学性能研究","volume":"32","year":"2009"},{"abstractinfo":"采用商业有限元软件MSC.Nastran,运用简单的Shell单元对复合材料格栅结构蒙皮和加强筋进行模拟,预测复合材料格栅结构名义纵向拉伸强度/模量,弯曲强度/模量.计算结果表明,随着复合材料格栅中肋高度的增加,名义弯曲强度/模量和拉伸强度/模量均有下降趋势.","authors":[{"authorName":"蒋诗才","id":"b264856e-a05c-4747-80ae-2c9d02aac447","originalAuthorName":"蒋诗才"},{"authorName":"邢丽英","id":"3bf27c63-6eb6-4ff7-9c81-fc00d6dd7d99","originalAuthorName":"邢丽英"},{"authorName":"李斌太","id":"185610e9-07f5-4025-8438-99367012ca37","originalAuthorName":"李斌太"},{"authorName":"陈祥宝","id":"5da52835-e7dc-45d9-a57e-cc74cf6f29de","originalAuthorName":"陈祥宝"}],"doi":"10.3969/j.issn.1005-5053.2007.04.014","fpage":"65","id":"c74f898a-9a73-4129-b5b1-4beb2ae0705f","issue":"4","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"63d80c32-21f6-4121-9ddc-47f6458f16af","keyword":"复合材料格栅结构","originalKeyword":"复合材料格栅结构"},{"id":"002bea0d-6c61-4a3d-a494-9300793afcd9","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"58de2b35-8fa2-4f4d-a6bc-53128f6b4392","keyword":"预测","originalKeyword":"预测"}],"language":"zh","publisherId":"hkclxb200704014","title":"复合材料格栅结构单元力学性能预测","volume":"27","year":"2007"},{"abstractinfo":"先进复合材料格栅结构(AGS)在航空、航天结构工程中有着广泛的应用前景.本文作者针对低速冲击载荷作用下先进复合材料格栅结构的载荷重构进行了研究.本文中研究了平板型复合材料格栅结构在横向低速冲击载荷作用下的前向响应近似模型.考虑AGS板蒙皮/肋的弯剪耦合效应和截面偏心距e,对平板型复合材料格栅结构的等效刚度模型进行了改进.基于改进的等效刚度模型和非对称Mindlin板理论,建立了平板型格栅结构的前向响应近似模型及其状态空间表达式,应用傅立叶展开求解了低速横向冲击载荷作用下的结构响应,并通过数值试验验证了该方法的实用性与可靠性.该部分研究将为平板型复合材料格栅结构的载荷重构Ⅱ:逆向重构的研究提供前提条件和理论基础.","authors":[{"authorName":"章继峰","id":"75792664-0461-469b-83d9-b505eb0b39ee","originalAuthorName":"章继峰"},{"authorName":"张博明","id":"e384f1c1-3aab-419f-8d30-31fc4e7c0d91","originalAuthorName":"张博明"},{"authorName":"武湛君","id":"f9f71193-aea7-4ed0-8fe3-b64a01ea5300","originalAuthorName":"武湛君"},{"authorName":"杜善义","id":"01e40498-688f-4287-8f7f-de5a4c2b24cb","originalAuthorName":"杜善义"}],"doi":"10.3321/j.issn:1000-3851.2007.04.027","fpage":"154","id":"1d7a68dc-9423-4053-a444-3b146b532d30","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"bd4e193f-1871-4eb4-9dbd-f0af7f228b8c","keyword":"载荷重构","originalKeyword":"载荷重构"},{"id":"6fc42905-1574-47da-a3ff-1811ff9527ce","keyword":"先进复合材料格栅结构","originalKeyword":"先进复合材料格栅结构"},{"id":"e6301e74-10c0-417f-9e3d-6299852c3479","keyword":"前向响应模型","originalKeyword":"前向响应模型"},{"id":"12b532f5-9b05-478b-8b13-bb4b7567a682","keyword":"等效刚度模型","originalKeyword":"等效刚度模型"}],"language":"zh","publisherId":"fhclxb200704027","title":"平板型复合材料格栅结构载荷重构研究Ⅰ:前向响应模型","volume":"24","year":"2007"},{"abstractinfo":"在拉挤-互锁平板型复合材料格栅结构的制作演示基础上,提出了几种增强改进的方法,并实现了一种平板型复合材料格栅结构的制造.借助有限元模型,考虑到结构的力学性能和制作工艺,对结构的最优化几何参数进行了研究,建立了加帽增强平板型格栅结构几何参数的初步设计方法.","authors":[{"authorName":"章继峰","id":"eec75be8-d170-4383-83a7-64f44d4548f8","originalAuthorName":"章继峰"},{"authorName":"张博明","id":"cbf2f635-c91c-44b3-95e2-706d0f2ea907","originalAuthorName":"张博明"},{"authorName":"杜善义","id":"a2dcf260-4e92-447c-844b-7c0ed4a4259e","originalAuthorName":"杜善义"}],"doi":"10.3321/j.issn:1000-3851.2006.03.029","fpage":"153","id":"684a856f-622f-488b-ae39-ae46f880c361","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"2a00a837-d48b-468b-bedf-33402b2fb666","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"01e4417f-d07c-485c-b65b-095eb1e7dfd4","keyword":"格栅结构","originalKeyword":"格栅结构"},{"id":"bfbdd445-b54a-49ba-b8e2-3ade708f0ef2","keyword":"拉挤-互锁工艺","originalKeyword":"拉挤-互锁工艺"},{"id":"35808623-dd72-4c88-bd39-c1ec8d47e7d5","keyword":"几何参数设计","originalKeyword":"几何参数设计"}],"language":"zh","publisherId":"fhclxb200603029","title":"平板型复合材料格栅结构的增强改进与参数设计","volume":"23","year":"2006"},{"abstractinfo":"阐述了复合材料格栅结构稳定性及优化分析方法研究概况.指出在格栅结构初级设计阶段可利用拟膜分析法对等效的格栅平板、圆筒及锥筒进行整体屈曲计算即可,而对于复杂构型格栅结构,由于不对称性及拉-压-扭耦合效应存在很难获得解析解,需借助有限法对结构进行非线性求解而求得其真实力学响应,同时还介绍了其他算法,如遗传算法.最后介绍了复合材料格栅结构破坏机理的一些试验方法.","authors":[{"authorName":"陈书华","id":"8644b60a-5ca7-4679-b045-9ded95a663cc","originalAuthorName":"陈书华"},{"authorName":"刘勇琼","id":"06384e80-fee7-41ea-a014-d6dc8a9c6dd2","originalAuthorName":"刘勇琼"},{"authorName":"刘建超","id":"651464d5-553e-4853-8cc8-7ef0d25b7b8f","originalAuthorName":"刘建超"}],"doi":"10.3969/j.issn.1007-2330.2012.03.001","fpage":"1","id":"34ad5790-1d93-410e-95c6-921297807f3e","issue":"3","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"c0328689-3017-457c-898c-ce6eb73121b3","keyword":"复合材料格栅结构","originalKeyword":"复合材料格栅结构"},{"id":"f2eba48d-9c8c-4edd-bd75-01393afe7d4c","keyword":"稳定性","originalKeyword":"稳定性"},{"id":"b00daa04-3cdd-4268-a145-4ce32b080dac","keyword":"优化","originalKeyword":"优化"}],"language":"zh","publisherId":"yhclgy201203001","title":"复合材料格栅结构稳定性与优化分析","volume":"42","year":"2012"},{"abstractinfo":"采用空间回路网法计算得到填充吸波泡沫的碳纤维复合材料格栅结构的电磁散射性能.根据格栅结构的周期性排布特征,采用Floquet定理分析结构的周期性边界条件,将计算模型简化为一个周期单元进行电磁场分布计算.通过计算结果分析结构在不同频率、不同单元体尺寸下的吸波性能.计算表明:对于含吸波泡沫的复合材料格栅结构,其吸波性能明显好于未填充结构;格栅单元中所填充的泡沫厚度以及泡沫体积分数是影响格栅结构吸波性能的2个主要因素.","authors":[{"authorName":"彭兴林","id":"790c370a-acfa-4e51-a2d6-16840dfb4207","originalAuthorName":"彭兴林"},{"authorName":"徐元铭","id":"94f3887c-0da3-4ee2-a421-46db960b66e3","originalAuthorName":"徐元铭"},{"authorName":"梁东平","id":"5a870946-79bf-4621-b732-3703295e737a","originalAuthorName":"梁东平"}],"doi":"","fpage":"162","id":"f8cfa146-12b6-444e-8f7f-08bb33643bdc","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"5d3faff4-a84b-4419-87cf-36b99d0dd3d4","keyword":"吸波泡沫","originalKeyword":"吸波泡沫"},{"id":"8de0369b-e309-4ffd-92f6-650f8a2a88cd","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"07cb060b-e6fc-4a73-8f49-2db162a4c69b","keyword":"格栅结构","originalKeyword":"格栅结构"},{"id":"483e2ee2-50ad-44d8-8248-a200981c56d0","keyword":"电磁散射","originalKeyword":"电磁散射"},{"id":"918d0a80-4852-4ef1-8f4b-f4b3af6c6c70","keyword":"空间回路网法","originalKeyword":"空间回路网法"},{"id":"55c2241f-3eb6-45ff-b193-e4a45f94e24f","keyword":"周期性结构","originalKeyword":"周期性结构"}],"language":"zh","publisherId":"fhclxb200903028","title":"填充吸波泡沫的碳纤维复合材料格栅结构吸波性能计算","volume":"26","year":"2009"},{"abstractinfo":"针对采用格栅结构的某无人机机翼,研究了机翼格栅结构在承受低速冲击下结构材料的损伤特性;在ABAQUS软件中建立了冲击损伤过程有限元模型,采用Hashin-Rotem应变失效准则和Camanho参数退化方式,对无穿透破坏前提下的单侧带蒙皮格栅结构进行了冲击仿真实验.研究了针对不同格栅结构构型、不同冲击位置、不同冲击能量等情况下的损伤特性.结果表明:对结构不同位置进行冲击时,结构损伤类型、面积、扩展特性等都有极大的不同,而且复合材料结构不同铺层的损伤特性也有很大差异;验证了格栅结构对损伤扩散具有良好的限制能力,表明格栅结构具有很好的抗损伤能力.","authors":[{"authorName":"蓝友泽","id":"13e9a7ad-79bc-43bf-917d-457b7c974251","originalAuthorName":"蓝友泽"},{"authorName":"朱亮","id":"b0498443-a3a5-4d8b-82c7-a12925249e54","originalAuthorName":"朱亮"},{"authorName":"徐志伟","id":"3fbdf778-ee70-4084-b774-89c746323046","originalAuthorName":"徐志伟"}],"doi":"","fpage":"165","id":"b22c519f-cd7b-4a90-b857-2268b731df4b","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"ae02c49e-eae7-4328-a312-34c273711179","keyword":"格栅结构","originalKeyword":"格栅结构"},{"id":"94649b4c-4338-43a1-9e08-d2a8e92c533f","keyword":"飞行器机翼","originalKeyword":"飞行器机翼"},{"id":"be43b436-c505-4f99-8932-1bfa0f292b25","keyword":"低速冲击","originalKeyword":"低速冲击"},{"id":"e2a2df04-fe5d-4682-98b5-eea68087101e","keyword":"冲击损伤","originalKeyword":"冲击损伤"},{"id":"19e30245-7061-43a9-a72c-99a15e2b1daa","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"fhclxb201302026","title":"复合材料机翼格栅结构低速冲击损伤仿真研究","volume":"30","year":"2013"},{"abstractinfo":"采用数值分析方法研究了冲击后含损伤的复合材料格栅加筋板的后屈曲特性.基于Mindlin一阶剪切理论和Von Karman大挠度理论,建立了冲击后蒙皮内含分层损伤复合材料格栅加筋板后屈曲分析的有限元方法;分析中同时考虑了蒙皮和肋骨中纤维断裂、基体开裂等损伤累积造成的刚度的退化和蒙皮分层子板间的闭合接触效应,为含损伤复合材料格栅加筋板的后屈曲特性研究提供了一种有效的数值分析方法.分析结果表明,蒙皮分层面积较大时,格栅加筋板出现蒙皮分层上子板的局部屈曲后仍然具有较强的继续承载能力,而在后屈曲分析中,应考虑损伤累积对格栅加筋结构承载能力的影响;采用非线性虚拟界面元可成功处理分层子板间的闭合接触效应.","authors":[{"authorName":"白瑞祥","id":"9de29f6b-26d6-4cf2-9903-e816797b144d","originalAuthorName":"白瑞祥"},{"authorName":"王蔓","id":"3061b8d9-65bb-40f9-b0eb-edbf89587e42","originalAuthorName":"王蔓"},{"authorName":"陈浩然","id":"f3784283-1951-4cad-87a3-1032a1e6d0cc","originalAuthorName":"陈浩然"}],"doi":"10.3321/j.issn:1000-3851.2006.03.027","fpage":"141","id":"d48a46e5-dc2b-4af1-8d55-a882960e07a0","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"87277b39-a7dc-4255-b3bc-acf98c630955","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"c7b988fb-b16c-42e0-9cba-e1269a54f4e0","keyword":"格栅加筋结构","originalKeyword":"格栅加筋结构"},{"id":"9539f4a4-6f2f-40d7-90a7-2ed9cc990146","keyword":"分层损伤","originalKeyword":"分层损伤"},{"id":"54c049c7-640a-4db0-a7c6-6fdc52539257","keyword":"逐步失效","originalKeyword":"逐步失效"},{"id":"34938a10-b9c5-407d-9647-6d71b87332dd","keyword":"后屈曲","originalKeyword":"后屈曲"}],"language":"zh","publisherId":"fhclxb200603027","title":"冲击后含损伤复合材料格栅加筋板的后屈曲","volume":"23","year":"2006"}],"totalpage":6734,"totalrecord":67331}