材料导报, 2013, 27(z2): 1-4.
聚合物/无机纳米复合材料的制备与应用进展
1.中国工程物理研究院核物理与化学研究所,绵阳621900
{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"分析了d电子理论在铌基合金中的适用性,改进了Md参数并进行了验证,对轻质铌钛合金系统进行了设计计算.结果表明:固溶强化铌基合金最为有效的元素主要包括W、Mo、Zr、Hf、Ta,铌基合金中加入相同原子分数的W元素的强化效果优于Mo元素;铌基合金中Ti元素的含量增多,会降低合金的高温强度;综合考虑合金密度、高温强度、抗氧化性等因素,通过d电子理论设计出轻质铌钛合金的最优参考组分为(质量分数,%):65.95Nb-17Ti-3A1-4Cr-5V-2W-1.5Mo-1.5Hf-0.05C.","authors":[{"authorName":"孔金涛","id":"67e91ac7-a36c-43c0-b9b3-205e78f31137","originalAuthorName":"孔金涛"},{"authorName":"胡锐","id":"fa9036a2-5c5d-47a7-9231-bd0d2dfc45d2","originalAuthorName":"胡锐"},{"authorName":"寇宏超","id":"c5be59e8-b29b-4dfa-9400-1cca663704ce","originalAuthorName":"寇宏超"},{"authorName":"李金山","id":"4db00846-5632-416c-9533-da8d6f9305bb","originalAuthorName":"李金山"},{"authorName":"郑欣","id":"bb2bb9c3-9c71-4db7-b2cf-d19482a03af7","originalAuthorName":"郑欣"}],"doi":"","fpage":"1119","id":"d455de01-a25d-4bf0-89af-ab1aa29a3988","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"056fe66e-4572-4787-8678-1aa107eb14af","keyword":"轻质Nb-Ti高温合金","originalKeyword":"轻质Nb-Ti高温合金"},{"id":"8296f542-cd0e-4db1-8559-27fd507b9697","keyword":"合金设计","originalKeyword":"合金设计"},{"id":"32236fd9-0c8d-4cc3-b704-1894a4cc5910","keyword":"d电子理论","originalKeyword":"d电子理论"}],"language":"zh","publisherId":"xyjsclygc201505017","title":"基于d电子理论的轻质Nb-Ti高温合金设计","volume":"44","year":"2015"},{"abstractinfo":"研究了含Nb-Ti微合金汽车用钢高温变形时的软化行为和晶粒析出,对析出物的尺寸和分布进行了电镜分析.通过单道次和双道次压下模拟实验,分析了试验钢在不同温度和不同变形条件下的流动应力及显微组织.这些研究为制定最佳控轧工艺,得到细化奥氏体晶粒,获得良好的组织、性能打下了理论基础.","authors":[{"authorName":"赵刚","id":"0850962f-da3f-4654-9654-10c7413b56cc","originalAuthorName":"赵刚"},{"authorName":"叶传龙","id":"a968c92f-65be-422a-96c6-eaf3fcd638d7","originalAuthorName":"叶传龙"},{"authorName":"余驰斌","id":"a31f2112-615a-43fa-8f4c-97c76333e00e","originalAuthorName":"余驰斌"},{"authorName":"宋平","id":"b3d31e57-a9b8-464a-8ca0-50ff933fb4ff","originalAuthorName":"宋平"},{"authorName":"苏毅","id":"117280f6-b6b6-4c5b-ac18-a49cdc2f5bea","originalAuthorName":"苏毅"},{"authorName":"曾萍","id":"a433cd97-8a7e-4153-8c3d-0d805a5d43aa","originalAuthorName":"曾萍"},{"authorName":"陈良","id":"c8e276f7-b64e-4f24-82d1-5fdc1ef6a993","originalAuthorName":"陈良"}],"doi":"10.3969/j.issn.1001-1447.2003.03.013","fpage":"46","id":"7649a4c7-f0a0-4a58-806a-1f32d9e1afee","issue":"3","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"da8aa5c1-1af5-4aa2-ba45-10f7ca75ac34","keyword":"Nb-Ti微合金钢","originalKeyword":"Nb-Ti微合金钢"},{"id":"8c64c11a-dd0c-46e9-bce2-d9a3eab4c456","keyword":"细化晶粒","originalKeyword":"细化晶粒"},{"id":"83d98a2f-5948-4b1a-96ad-5c4363ead80f","keyword":"析出物","originalKeyword":"析出物"},{"id":"6ea98dfe-74fd-4868-8edb-9f3d439c8fb9","keyword":"TEM分析","originalKeyword":"TEM分析"}],"language":"zh","publisherId":"gtyj200303013","title":"含Nb-Ti微合金汽车用钢高温变形组织及力学性能的研究","volume":"31","year":"2003"},{"abstractinfo":"利用Gleeble-3500热力模拟实验机对含Nb-Ti低碳微合金钢双道次高温压缩软化行为进行了模拟研究.研究了各种变形参数对该钢软化行为的影响,建立了该钢软化行为的动力学方程.结果表明,随着道次间停留时间的延长、变形温度、变形量以及应变速率的增大,再结晶率随之增大.变形温度对奥氏体晶粒尺寸有着显著的影响,变形温度的降低将使奥氏体晶粒尺寸明显粗化;奥氏体晶粒尺寸随着道次间停留时间的延长而增大,随着变形量以及应变速率的增大而减小.","authors":[{"authorName":"朱松鹤","id":"5900a3cf-5c2d-4ce3-a39e-be6580f6e558","originalAuthorName":"朱松鹤"},{"authorName":"戴兵","id":"bc09ea44-5c5b-491d-82bb-a929f19f936b","originalAuthorName":"戴兵"},{"authorName":"张梅","id":"471dd739-a006-4a39-ab9b-3028865173fd","originalAuthorName":"张梅"},{"authorName":"卫品官","id":"60a5744f-a912-48fd-8132-380b0479b137","originalAuthorName":"卫品官"},{"authorName":"张恒华","id":"e3a10354-b069-40e7-9472-4493368b69a0","originalAuthorName":"张恒华"}],"doi":"","fpage":"53","id":"4277855f-760f-4b22-8edf-88a18daa2611","issue":"10","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"aff6dae2-1166-4b39-a019-9dcf71ecbdbc","keyword":"含Nb-Ti低碳微合金钢","originalKeyword":"含Nb-Ti低碳微合金钢"},{"id":"51754b26-5c1e-42c5-9a8b-f314e1e9333f","keyword":"双道次热压缩","originalKeyword":"双道次热压缩"},{"id":"9ecf7a1b-b748-4ba8-be3b-f5c2fafb6b2d","keyword":"软化","originalKeyword":"软化"}],"language":"zh","publisherId":"jsrclxb201010011","title":"含Nb-Ti低碳微合金钢双道次高温压缩软化行为","volume":"31","year":"2010"},{"abstractinfo":"简述低碳结构钢微合金系的发展,重点介绍Nb-V和Nb-Ti微合金钢在强度、韧塑性、织构及焊接性能方面的差异.","authors":[{"authorName":"韩安昌","id":"97273b54-8af3-46af-81b1-538cdcf9a06a","originalAuthorName":"韩安昌"},{"authorName":"林大为","id":"27894387-2843-4339-9aa0-6954083fd722","originalAuthorName":"林大为"},{"authorName":"邱昱斌","id":"77e1e225-5bc7-415a-8034-3d12e1995f71","originalAuthorName":"邱昱斌"}],"doi":"10.3969/j.issn.1001-7208.2004.05.009","fpage":"34","id":"b7579df4-e8a0-4ac2-8087-9eaed9466c87","issue":"5","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"cf35de99-e97a-41ad-8e57-bd0b24cf6c44","keyword":"Nb-V微合金钢","originalKeyword":"Nb-V微合金钢"},{"id":"20113c26-977f-426b-afb8-4f100e9bb5dc","keyword":"Nb-Ti微合金钢","originalKeyword":"Nb-Ti微合金钢"},{"id":"c588b191-13ed-4877-aa30-fc14032b9b7e","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"d13150b7-772b-41b2-8471-c7ffdfeffce6","keyword":"织构","originalKeyword":"织构"},{"id":"f35b052d-5a18-42a1-8f73-f08bf8880e30","keyword":"焊接性能","originalKeyword":"焊接性能"}],"language":"zh","publisherId":"shjs200405009","title":"低碳结构用Nb-V和Nb-Ti复合微合金钢性能的比较","volume":"26","year":"2004"},{"abstractinfo":"结合模板浸渍和粉末冶金烧结法,制备出具有良好孔隙性能和力学性能的多孔Nb-Ti合金.采用X射线衍射分析仪(XRD)、力学试验机、体视显微镜(SM)以及扫描电子显微镜(SEM),研究Ti含量(0~15%,质量分数)对多孔Nb-Ti合金成分、力学性能、孔隙结构及微观形貌的影响.结果表明:Nb-Ti合金烧结过程完全,孔隙三维连通程度高,孔隙率为68.50%.随Ti含量从0增加到15%,合金的力学性能发生明显变化,其中抗压强度从(27.6±0.872) MPa增加到(59.3±1.354) MPa后降为(33.7±1.045) MPa,弹性模量从(0.21±0.0136) GPa增加到(0.46±0.0191) GPa.合金孔隙结构均匀化和三维连通程度增加,孔隙结构从块状转变为蜂窝状,颗粒间烧结颈长大,结合变紧密,Ti颗粒对Nb-Ti合金烧结的促进作用明显增强.多孔Nb-10Ti合金的孔隙形貌与松质骨类似,力学性能与人体松质骨相匹配,适合于医学植入应用.","authors":[{"authorName":"刘超","id":"92c082b7-fcdb-4f68-aff2-4ab1902a998c","originalAuthorName":"刘超"},{"authorName":"杨海林","id":"1b489b76-40c0-4c6f-a6b8-4febe29d35a7","originalAuthorName":"杨海林"},{"authorName":"李婧","id":"cdcc58c4-083d-4b29-b23b-f51583801138","originalAuthorName":"李婧"},{"authorName":"阮建明","id":"f3073a29-97ab-4909-9ed5-b2820fd0db9d","originalAuthorName":"阮建明"}],"doi":"","fpage":"752","id":"f93e9748-b91b-4586-abb2-f7f7a454990c","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"5026765d-ee39-4051-9aaa-51abbb4b3c8a","keyword":"Nb-Ti合金","originalKeyword":"Nb-Ti合金"},{"id":"ab59696c-6eb4-47d0-a8ef-27c4f1c1a358","keyword":"多孔金属","originalKeyword":"多孔金属"},{"id":"7267961c-621c-48aa-ab7f-517cb06761d5","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"ee6208c9-d963-4d36-83fe-c543c95d39de","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"5b67efd6-1b6b-4ef0-8e3e-e6c11878517b","keyword":"微观结构","originalKeyword":"微观结构"}],"language":"zh","publisherId":"zgysjsxb201403023","title":"生物医用多孔Nb-Ti合金的孔隙率和力学性能","volume":"24","year":"2014"},{"abstractinfo":"采用0.07 wt%Ti和0.015 wt%Nb-0.07 wt%Ti微合金化的成分体系,通过控轧控冷和控轧控冷+回火工艺制备了厚度为30 mm的钢板.钢板在TMCP状态的形貌为贝氏体板条和沿贝氏体板条分布的马奥组元和析出物构成.回火后马奥组元分解,贝氏体板条界面弱化,在贝氏体板条中形成了大量细小的Ti的析出物.钢板中的析出物主要包括:粗大的TiN析出、TiC、Ti4C2S2析出和Nb-Ti的复合析出等.粗大方形TiN在钢中的Al2O3、MgO或Ti2O3的夹杂上形核长大,边长为5 μm左右.在0.07 wt%Ti成分体系中,TMCP和TMCP+回火状态钢板中的析出物主要是100 nm以下的TiN、TiC和Ti4C2S2析出.在0.015wt%Nb-0.07 wt%Ti成分体系中,析出物主要是Ti和Nb的碳化物析出,尺寸300 nm以下.添加微量的Nb会导致0.07 wt%Ti钢板的强度和冲击功下降,其原因可能是由于Nb和Ti形成较大的复合析出物,降低了析出物对位错运动的抑制作用,导致钢板力学性能下降.","authors":[{"authorName":"赵四新","id":"f618c456-42ee-48fb-b7cb-ffe59f4fda12","originalAuthorName":"赵四新"},{"authorName":"姚连登","id":"e23f9779-5fa5-4a3f-9331-43532d29b6f0","originalAuthorName":"姚连登"}],"doi":"","fpage":"71","id":"efe44863-885f-4e01-abcd-c77028cb8421","issue":"12","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"433381cf-8820-407f-92ac-31e53d8850ee","keyword":"贝氏体","originalKeyword":"贝氏体"},{"id":"8484b86e-85cc-49ed-8136-10cb2449c389","keyword":"Ti微合金化","originalKeyword":"Ti微合金化"},{"id":"0d83beba-915c-4bcd-bbb2-b80f0fba0970","keyword":"析出","originalKeyword":"析出"},{"id":"47b1b5a9-852d-4955-a866-cee7a977ee54","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"9f09495b-949b-4a36-8990-67ede2d2216d","keyword":"厚钢板","originalKeyword":"厚钢板"}],"language":"zh","publisherId":"jsrclxb201012015","title":"Ti和Nb-Ti微合金化高强钢中Ti的析出行为","volume":"31","year":"2010"},{"abstractinfo":"通过双道次压缩试验研究了Nb-Ti微合金钢的静态再结晶行为,确定了应变诱导沉淀析出前Nb-Ti微合金钢的静态再结晶激活能,并建立了静态再结晶动力学模型。采用面积法及积分-能量法计算的软化率,很好地反映了微合金钢的静态再结晶行为及应变诱导沉淀析出行为。应变诱导沉淀析出的鼻尖温度在900~925℃之间,静态再结晶的临界温度(SRCT)高于950℃。","authors":[{"authorName":"陈俊","id":"c9c1be00-dcf9-4694-8ea4-62e494fc1033","originalAuthorName":"陈俊"},{"authorName":"周砚磊","id":"9e3f49d2-c470-42e4-9cca-b5397b1f0796","originalAuthorName":"周砚磊"},{"authorName":"唐帅","id":"ad39fb64-8cbd-402e-ae9f-17e1a18dca17","originalAuthorName":"唐帅"},{"authorName":"刘振宇","id":"7c642302-d936-4fd7-8693-179ce573d685","originalAuthorName":"刘振宇"},{"authorName":"王国栋","id":"2079445a-f3d5-4f6c-a104-cd6922588c22","originalAuthorName":"王国栋"}],"doi":"","fpage":"54","id":"47c9d7e2-1d99-4fda-a043-ef9bb95f8ca7","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"74fbe0f7-ae28-4d2a-9454-0f4701b456dd","keyword":"微合金钢","originalKeyword":"微合金钢"},{"id":"596593d7-8c7e-4638-af7b-81aeaa42aa2f","keyword":"静态再结晶","originalKeyword":"静态再结晶"},{"id":"c3e31299-c6dc-4d88-ad32-c7821b1d7d3a","keyword":"激活能","originalKeyword":"激活能"},{"id":"02969265-6fb0-472b-aafa-355223593fd6","keyword":"动力学模型","originalKeyword":"动力学模型"},{"id":"877c9b82-a787-48c6-a685-02bb8fb8e234","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"86b028dd-f6ce-4f31-b71c-f0e95269a7b8","keyword":"析出物","originalKeyword":"析出物"}],"language":"zh","publisherId":"gt201205011","title":"Nb-Ti微合金钢的静态再结晶行为","volume":"47","year":"2012"},{"abstractinfo":"通过双道次压缩试验研究了Nb-Ti微合金钢的静态再结晶行为,确定了应变诱导沉淀析出前Nb-Ti微合金钢的静态再结晶激活能,并建立了静态再结晶动力学模型。采用面积法及积分-能量法计算的软化率,很好地反映了微合金钢的静态再结晶行为及应变诱导沉淀析出行为。应变诱导沉淀析出的鼻尖温度在900~925℃之间,静态再结晶的临界温度(SRCT)高于950℃。","authors":[{"authorName":"陈俊,周砚磊,唐帅,刘振宇,王国栋","id":"d6792750-6f97-4cfd-9448-454ccf8bbfd9","originalAuthorName":"陈俊,周砚磊,唐帅,刘振宇,王国栋"}],"categoryName":"|","doi":"","fpage":"54","id":"c7a7f145-14d8-41fb-bdcc-08039e30ddaf","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"f5e84710-2408-4db0-a50f-e3785b0add97","keyword":"微合金钢 ","originalKeyword":"微合金钢 "},{"id":"4eea0d7a-8ab7-4d25-83b6-63df38c493eb","keyword":" static recrystallization ","originalKeyword":" static recrystallization "},{"id":"e3375002-59a5-42b3-abac-e3ad903f8e52","keyword":" activation energy ","originalKeyword":" activation energy "},{"id":"9804ab9e-5a90-4dd4-9640-629d3b4616b0","keyword":" kinetics model ","originalKeyword":" kinetics model "},{"id":"9a4e750c-816f-4b8b-9cf7-ec1f2f869ed4","keyword":" microstructure ","originalKeyword":" microstructure "},{"id":"153acb2c-d39c-4031-a86d-488b04931264","keyword":" precipitates","originalKeyword":" precipitates"}],"language":"zh","publisherId":"0449-749X_2012_5_3","title":"Nb-Ti微合金钢的静态再结晶行为","volume":"47","year":"2012"},{"abstractinfo":"通过Nb-Ti复合微合金化钢奥氏体连续冷却过程的热模拟试验,结合显微组织观察和显微硬度测试,结果表明:Nb-Ti复合微合金化钢的临界淬火速率约为23℃/s,并且有很好的淬透性.随着冷却速率的增大,相变开始温度和结束温度均有所下降,室温组织中铁素体的含量逐渐减少,先期容易发生贝氏体转变,使后期形成马氏体板条或马氏体片变得更细,从而有利于强度和韧性的提高.","authors":[{"authorName":"李鑫","id":"67a4619a-3514-412b-9284-800203b1bf13","originalAuthorName":"李鑫"},{"authorName":"赵捷","id":"8ca712b8-eb29-4053-8385-56695101f150","originalAuthorName":"赵捷"},{"authorName":"包俊成","id":"f466ecad-e986-4d7b-9d9d-39d490c11198","originalAuthorName":"包俊成"},{"authorName":"宁保群","id":"e91e649d-861e-443d-8c1e-e5d4ee9fe288","originalAuthorName":"宁保群"}],"doi":"","fpage":"8","id":"be2ac816-4715-4b08-afe4-618b428dda45","issue":"6","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"60191298-0e15-411d-91a1-bd7bdea16e50","keyword":"Nb-Ti","originalKeyword":"Nb-Ti"},{"id":"bb6ac937-c9eb-438c-923d-afafab455526","keyword":"微合金钢","originalKeyword":"微合金钢"},{"id":"a8c5e678-90a2-4bc0-be8f-1e01ca4d3079","keyword":"连续冷却转变","originalKeyword":"连续冷却转变"},{"id":"3050c346-cc10-47f1-891b-d40fc5d357f7","keyword":"静态CCT曲线","originalKeyword":"静态CCT曲线"},{"id":"71af6171-237f-4f42-8443-fba933b7c34f","keyword":"热模拟","originalKeyword":"热模拟"}],"language":"zh","publisherId":"wlcs201306003","title":"新型Nb-Ti微合金钢连续冷却转变规律","volume":"31","year":"2013"},{"abstractinfo":"设计了650MPa级的Nb-Ti和Nb-V微合金钢的化学成分.采用正交实验方法考察了加热温度、终轧温度和终冷温度对这2种钢力学性能的影响.实验结果表明,加热温度和终冷温度是影响Nb-Ti和Nb-V钢力学性能的主要因素.2种钢的伸长率与屈服强度以及屈强比与屈服强度之间都具有明显的相关关系.","authors":[{"authorName":"邱昱斌","id":"3a1d014b-3af9-41b8-9a75-46da9ef60727","originalAuthorName":"邱昱斌"},{"authorName":"林大为","id":"c76dff7a-1ded-49bb-be66-72c6c8a5d7e3","originalAuthorName":"林大为"},{"authorName":"韩安昌","id":"e50367a0-d94e-418b-a279-034a55d52039","originalAuthorName":"韩安昌"}],"doi":"","fpage":"48","id":"3c930f9d-dd07-4ccf-8ce4-b49aa7633aa3","issue":"1","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"38b2b37e-7dc6-45a3-8186-0bcb9dedb1da","keyword":"微合金钢","originalKeyword":"微合金钢"},{"id":"029b062c-95a8-4f92-b973-cc03fc42f83a","keyword":"热轧温度参数","originalKeyword":"热轧温度参数"},{"id":"a0beade1-126a-4ff2-8610-182e2d7ce7f6","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gtyjxb200701011","title":"热轧温度参数对Nb-Ti和Nb-V微合金钢力学性能的影响","volume":"19","year":"2007"}],"totalpage":5981,"totalrecord":59801}