欢迎登录材料期刊网

材料期刊网

高级检索

采用振动研磨法,在干法室温状态下制备出具有不同微结构分布的纳米活性炭,研究了工艺条件的变化对活性炭电极电化学性能的影响,分析了材料的微结构演化与电极静电容量之间的关系.扫描电子显微镜和比表面积测试结果表明,细化后活性炭颗粒的比表面积明显增加,孔径分布趋于合理.循环伏安特性和恒电流充放电测试结果表明,激振频率为700r/min时,在氮气氛围中振动研磨1h后,活性炭电极材料具有更为优良的电化学性能.

Nano-activated carbon electrode materials with different pore size distributions are prepared by vibration milling at room temperature The influences are studied on the performances of electrochemistry of AC electrode in the milling conditions.The measurement of SEM and BET reveals that the AC microstructure has been changed in the process of vibration milling,and the size of the activated carbon particles,surface area and the pore distribution becomes more ressonable.The research results indicate that nm-AC electrode materials can provide perfect electrochemieal performances in the vibration frequency 700r/min,nitrogen ambient and milling 1h.Based on the testing of cyclic voltammetry and the specific capacitance of AC electrode,it proves effective highly for the improvement of the performance of AC electrode by the vibration milling in different conditions.

参考文献

[1] 王晓峰,王大志,梁吉.氧化镍/碳纳米管复合型超级电容器的研制[J].无机化学学报,2003(02):137-141.
[2] 王秀芳,张会平,肖新颜,陈焕钦.高比表面积活性炭研制进展[J].功能材料,2005(07):975-977,980.
[3] 孟庆函,张睿,李开喜,吕春祥,凌立成.双电层电容器用中孔活性炭电极的电化学性能[J].功能材料,2002(06):628-630.
[4] 田艳红,张为芹.超级电容器用高性能中孔活性炭的研究[J].电源技术,2004(04):227-230.
[5] 李生娟,王树林,徐波,陈新龙.双电层电容器活性炭电极的优化[J].化工学报,2006(07):1617-1621.
[6] Frackowiak E et al.Carbon materials for the electrochemical storage of energy in capacitors[J].Carbon,2001,39:937.
[7] Atlung S;West K .Dynamic aspects of solid solution cathodes for electrochemical power sources[J].Journal of the Electrochemical Society,1979,126(08):1311.
[8] 苏丹,王树林.用欧姆龙PLC与上位机通信实现振动磨的变频控制[J].矿山机械,2007(01):44-46.
[9] Wang Shulin.Impact chaos control and stress release -A key for development of ultra fine vibration milling[J].自然科学进展(英文版),2002(05):336-341.
[10] Hang S .Activated carbons and double layer capacitance[J].Electrochimica Acta,1996,41:1633.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%