- 首页
- 期刊
- Journal of Magnetism and Magnetic Materials
- The magnetostriction of Fe-(18-x) at% Ga-x at% Al(3 <= x <= 13.5) alloys
{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了Mn0.99 V0.01 CoGe合金在
升降温等温磁化过程中的磁滞行为及对其磁热性能的影响。发现合金在一级磁结构相变附近
升降温等温磁化过程表现出明显不同的磁滞行为,
降温过程的磁滞损耗明显大于升温
过程。讨论了这种磁滞行为的差异现象对合金磁热性能的影响。","authors":[{"authorName":"马胜灿","id":"4bab3ec7-7bd4-445d-918e-906012f85cde","originalAuthorName":"马胜灿"},{"authorName":"刘华英","id":"d04a64fe-f7fd-4192-ad31-ea37ca384812","originalAuthorName":"刘华英"},{"authorName":"侯东","id":"a375f46e-241a-49f4-8d5c-a7a3a93d6b21","originalAuthorName":"侯东"},{"authorName":"柯慧","id":"f1cf651b-77c5-4764-8479-3905121b7935","originalAuthorName":"柯慧"},{"authorName":"钟震晨","id":"b18e629e-312e-4da6-bced-d94b014f7fa7","originalAuthorName":"钟震晨"}],"doi":"10.3969/j.issn.1001-9731.2014.10.006","fpage":"10033","id":"ba37e617-0af8-4ea0-8948-68f5cb0c9d4b","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"585ad8a8-3ca8-4821-a0de-85d194eeb57f","keyword":"Mn0.99V0.01CoGe合金","originalKeyword":"Mn0.99V0.01CoGe合金"},{"id":"4a6e4932-a0ea-4114-af4f-d7b10e09661f","keyword":"
升降温等温磁化过程","originalKeyword":"升降温等温磁化过程"},{"id":"7468ef17-d6e7-4b74-862e-be80659687de","keyword":"磁滞行为差异","originalKeyword":"磁滞行为差异"},{"id":"ca91f63d-f0c6-4928-b12c-5bf7b1b8205a","keyword":"磁热性能","originalKeyword":"磁热性能"}],"language":"zh","publisherId":"gncl201410006","title":"Mn0.99V0.01CoGe合金的磁滞行为及其磁热性能研究","volume":"","year":"2014"},{"abstractinfo":"建立了某规格TB6钛合金坯料
升降温过程的数学模型,利用商业有限元软件DEFORM对其
升降温过程中的温度场进行有限元数值模拟.得到了TB6钛合金坯料在炉中升温和空冷
降温过程中任意一点的温度曲线,进而把该模拟方法应用于不同规格TB6钛合金坯料在
升降温过程的温度场模拟.结果表明:模拟的数据与实测数据吻合良好,此模型可用于加工前热处理工艺制定的依据.","authors":[{"authorName":"邵晖","id":"b7d42a6e-0fc1-479b-8f41-ac4b7ad52ee6","originalAuthorName":"邵晖"},{"authorName":"葛鹏","id":"b0b6f8bc-40d1-4a08-92eb-a96f3620a08d","originalAuthorName":"葛鹏"},{"authorName":"赵永庆","id":"e4772ed9-fc09-44b0-9248-ea4ad00cbfbe","originalAuthorName":"赵永庆"}],"doi":"10.3969/j.issn.1009-9964.2009.03.008","fpage":"34","id":"ff028fed-bfa0-455b-b7d3-89d3112f0a0d","issue":"3","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"4c45ac8d-a1df-4603-826f-597dc7c4df67","keyword":"坯料","originalKeyword":"坯料"},{"id":"1346fd9b-2c7f-4b6b-a3af-1d9db0b84435","keyword":"温度场","originalKeyword":"温度场"},{"id":"59227ddd-258a-416d-82ee-6c3302f5b833","keyword":"有限元","originalKeyword":"有限元"},{"id":"6ee5ddc7-e43a-420c-b311-4318ac56d2e7","keyword":"模拟","originalKeyword":"模拟"}],"language":"zh","publisherId":"tgyjz200903008","title":"TB6钛合金
升降温过程温度场的模拟","volume":"26","year":"2009"},{"abstractinfo":"对过饱和溶液在施加一定的流体压力差使之循环流动,实验结果测算草酸、草酸钠、硼酸和磷酸氢二钠等在不同温度下饱和溶液
降温结晶时流动电位随时间的变化规律.实验结果表明流动电位大小与结晶物质的种类、温度和浓度有关,同时易受外界因素的干扰,实验数据的严格重现较难.但多次实验结果都显示:过饱和溶液在某一温度下形成晶核
过程中其流动电位均发生显著变化;当饱和溶液起始结晶温度较高时,其流动电位突变点温度也更高.","authors":[{"authorName":"王建","id":"c0cda037-1f82-4a3d-a509-aa1a610ce154","originalAuthorName":"王建"},{"authorName":"周洪英","id":"18670096-afc5-4c59-b396-f0355e6cd48e","originalAuthorName":"周洪英"},{"authorName":"王明艳","id":"c8ec36c3-d7f8-437a-9436-88a536ff4c9a","originalAuthorName":"王明艳"},{"authorName":"李善忠","id":"469f88cc-63cb-45d3-b10d-5814e0c470ba","originalAuthorName":"李善忠"},{"authorName":"马卫兴","id":"89d37898-668b-4b42-8495-ffdade15747a","originalAuthorName":"马卫兴"},{"authorName":"许兴友","id":"719f9462-ac76-4bb7-ad35-08bcb9ef13b5","originalAuthorName":"许兴友"},{"authorName":"姜培琴","id":"87394e65-8c7f-45bf-9e6c-11e0138aa406","originalAuthorName":"姜培琴"},{"authorName":"王宝国","id":"f7cce2b7-0f9e-4b19-bbf4-ab21b7089437","originalAuthorName":"王宝国"},{"authorName":"沈国强","id":"d9914ceb-8ef2-4548-9d13-f046d55e15f5","originalAuthorName":"沈国强"}],"doi":"10.3969/j.issn.1000-985X.2005.03.038","fpage":"557","id":"9308a38b-8ffa-428a-8105-3eac7d5df45c","issue":"3","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"10fdbfc0-5c51-4c42-9a58-ebb17acfb578","keyword":"流动电位","originalKeyword":"流动电位"},{"id":"ba6553b1-191b-450f-9524-c5fc610171d0","keyword":"晶核","originalKeyword":"晶核"},{"id":"0479a957-598c-4069-a6b6-c4d321d1366f","keyword":"结晶","originalKeyword":"结晶"}],"language":"zh","publisherId":"rgjtxb98200503038","title":"流动电位法对
降温结晶
过程的研究","volume":"34","year":"2005"},{"abstractinfo":"实测BT22钛合金φ170 mm×200 mm锻棒固溶
降温过程内部不同部位,芯部、1/2R、边部
降温特性曲线.结果发现,由于相变作用875℃固溶
降温曲线有1个缓慢
降温阶段,在
降温曲线中出现1个近似平台,并且3个部位
降温具有很大的不同步性.同时研究875和810℃固溶
降温过程中的组织演变规律.通过硬度测试发现中规格锻棒热处理后内部力学性能不均匀.","authors":[{"authorName":"吴晓东","id":"60c52329-c24b-47e9-8a1e-67aa4e1bc2a0","originalAuthorName":"吴晓东"},{"authorName":"葛鹏","id":"f379eff9-d6d0-42aa-a427-15e654646622","originalAuthorName":"葛鹏"},{"authorName":"奚正平","id":"1dcab996-0f10-4154-91b8-ae7e50369abc","originalAuthorName":"奚正平"},{"authorName":"毛小南","id":"d5451d11-1486-444c-b090-cf5a15da8573","originalAuthorName":"毛小南"},{"authorName":"杨冠军","id":"c2238143-0679-46a1-8026-b346176d6906","originalAuthorName":"杨冠军"},{"authorName":"周伟","id":"0f83d930-3d3c-4b08-9c62-5df02c3b554a","originalAuthorName":"周伟"}],"doi":"","fpage":"1555","id":"0a1ad8e1-41a9-40b3-ae4b-6735f35fcb8a","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"a8a513af-9e3f-4363-94b1-3fbd1f0915a9","keyword":"BT22钛合金","originalKeyword":"BT22钛合金"},{"id":"3bd5fc2b-669b-4ee0-9362-c791e9d93f69","keyword":"热处理","originalKeyword":"热处理"},{"id":"c5f4b383-c680-4593-9a3f-cb16662b2012","keyword":"组织","originalKeyword":"组织"}],"language":"zh","publisherId":"xyjsclygc201009011","title":"BT22钛合金大尺寸锻棒固溶
降温过程的组织演变","volume":"39","year":"2010"},{"abstractinfo":"应力磁效应检测技术是一种新颖的、方便的、具有极大应用潜能和广阔应用前景的无损检测方法—金属磁记忆检测方法。然而,很少有人进行如何定量测量与评价的研究。铁磁试件应力
磁化过程中的
磁化反转现象对金属磁记忆定量检测评价至关重要。本文在反复加载-卸载条件下,测量了35号冷轧钢试件在不同的最大拉应力作用下试件表面某确定点漏磁场随拉应力的对应关系。测定了30CrMnSiNi2A钢中心小孔平板试样在不同应力作用下表面漏磁场的分布特征。建立和分析了两种应力磁效应的数学模型,即是应力
磁化反转效应的应力等效磁场模型和应力
磁化反转效应的磁导率模型。理论模型都能很好地反映应力
磁化耦合的反转现象,和试验数据基本相一致。理论模型的建立进一步证明了金属磁记忆定量检测的可能性,并为其进一步的深入研究奠定了基础。","authors":[{"authorName":"任尚坤","id":"f4556d0f-fc73-4076-948f-488af285a16b","originalAuthorName":"任尚坤"}],"categoryName":"|","doi":"","fpage":"48","id":"57ccfeeb-499c-4a69-bb9e-f934e7788e35","issue":"12","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"d3477168-56fa-468a-9f62-1bd659b71405","keyword":"金属磁记忆检测;无损检测;力-磁效应;磁机械效应;NDT","originalKeyword":"金属磁记忆检测;无损检测;力-磁效应;磁机械效应;NDT"}],"language":"zh","publisherId":"1001-0963_2010_12_8","title":"铁磁试件应力
磁化过程中的
磁化反转效应","volume":"22","year":"2010"},{"abstractinfo":"在反复加载一卸载条件下,测量了35号冷轧钢试件在不同的最大拉应力作用下试件表面某确定点漏磁场随拉应力的对应关系,并进行了讨论和分析.建立了两种应力磁效应的数学模型,即应力
磁化反转效应的应力等效磁场模型和应力
磁化反转效应的磁导率模型.理论模型都能很好地反映应力
磁化耦合的反转现象,和试验数据基本一致.理论模型的建立进一步证明了金属磁记忆定量检测的可能性.","authors":[{"authorName":"任尚坤","id":"e3b21a5f-3287-48bb-a864-f91d6ce6ad04","originalAuthorName":"任尚坤"},{"authorName":"周莉","id":"3eefbbd7-177e-46a6-acd2-351ed3492a4a","originalAuthorName":"周莉"},{"authorName":"付任珍","id":"ed30d07a-3faf-405a-8fa3-97fd7ce2f901","originalAuthorName":"付任珍"}],"doi":"","fpage":"48","id":"3cd054f8-14f6-4918-b3ea-120bccbf1168","issue":"12","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"5e325934-3bec-4fed-b688-1e7b8e1008e0","keyword":"金属磁记忆检测","originalKeyword":"金属磁记忆检测"},{"id":"99253480-ae3f-420d-a38e-f7b1d21c25d7","keyword":"无损检测","originalKeyword":"无损检测"},{"id":"5be3d40f-1d0d-47a4-a0cf-5b4503eef611","keyword":"力-磁效应","originalKeyword":"力-磁效应"}],"language":"zh","publisherId":"gtyjxb201012011","title":"铁磁试件应力
磁化过程中的
磁化反转效应","volume":"22","year":"2010"},{"abstractinfo":"金属磁记忆检测技术是一种可早期检测铁磁构件应力集中程度的新方法,但进一步定量评价和广泛应用的瓶颈问题是复杂的应力
磁化反转特征.对40Cr钢圆棒试件在不同最大拉力下进行反复加载-卸载拉伸试验,测定试件表面某确定点处漏磁场与拉应力的关系.试验结果表明,当试件处于弹性变形阶段时,漏磁场强度与拉应力的变化规律为线性关系;当试件受力超过屈服强度时,漏磁场强度与拉应力的变化规律变为折线,表现为先减小后增大再减小的应力
磁化反转现象.随着最大拉力的增大,应力
磁化反转极值点位置向较高拉应力方向移动,漏磁场强度最大变化量△Bmax也逐渐增大.","authors":[{"authorName":"段振霞","id":"5cd1143b-9735-4991-9e7b-992ff9fce0ae","originalAuthorName":"段振霞"},{"authorName":"任尚坤","id":"9f8bad3d-09c2-49d5-ac43-2b0b6139f76b","originalAuthorName":"任尚坤"},{"authorName":"习小文","id":"7d3f3287-dd6f-424e-9361-109a689457fe","originalAuthorName":"习小文"},{"authorName":"袁丽华","id":"b69ce8da-187d-412a-9f58-84d58a4a16ea","originalAuthorName":"袁丽华"}],"doi":"10.13228/j.boyuan.issn1001-0963.20150193","fpage":"77","id":"8599b7e0-9319-4a4d-8137-864a07382843","issue":"1","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"a3ac8b59-0c56-4b8e-bbcc-e9a54e723a11","keyword":"无损检测","originalKeyword":"无损检测"},{"id":"918eb07b-e308-4914-aaa7-65cc54ec7d51","keyword":"电磁检测","originalKeyword":"电磁检测"},{"id":"ddd6ead2-6ca6-4374-a212-f9a3c50064da","keyword":"磁记忆检测","originalKeyword":"磁记忆检测"},{"id":"818d82de-f13f-4b46-b68d-2579727758c0","keyword":"拉应力","originalKeyword":"拉应力"},{"id":"d67ab2bf-e8d8-4f2c-9c76-9403689b5548","keyword":"应力
磁化反转","originalKeyword":"应力磁化反转"}],"language":"zh","publisherId":"gtyjxb201601013","title":"40Cr钢应力
磁化过程中的
磁化反转特征","volume":"28","year":"2016"},{"abstractinfo":"详细观察了长条形NiFe薄膜元件(宽120μm,厚40nm)沿难轴方向(长方向)
磁化和反
磁化过程中磁畴结构变迁的全
过程.观察表明,在
磁化过程中,
磁化转动和不可逆畴壁位移同时存在;在反
磁化过程中,畴壁合并、封闭畴转变和畴壁极性转变是最主要的不可逆因素,也是造成元件输出讯号中Barkhausen噪声的主要物理根源.","authors":[{"authorName":"余晋岳","id":"593d54dd-b18e-4cd9-9560-cd035c12d499","originalAuthorName":"余晋岳"},{"authorName":"朱军","id":"a2e66280-c705-49af-91a0-d039997a4ab3","originalAuthorName":"朱军"},{"authorName":"周狄","id":"b5c68f3c-635a-4552-a9d7-42578d294dfd","originalAuthorName":"周狄"},{"authorName":"钱建国","id":"262b6725-082e-406a-8ce9-73208d2565b3","originalAuthorName":"钱建国"},{"authorName":"蔡炳初","id":"19b70207-6dab-4faa-8536-d4aa9652dfdf","originalAuthorName":"蔡炳初"},{"authorName":"赵小林","id":"8883f10c-bbb0-4f2f-8ae4-d410359ebe11","originalAuthorName":"赵小林"}],"doi":"","fpage":"481","id":"0775b26b-5e82-477c-8630-a40ece609049","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c3369d25-7129-4397-90c8-61496b22cd6b","keyword":"磁性簿膜元件","originalKeyword":"磁性簿膜元件"},{"id":"4de3f868-28f3-40eb-8c39-44340f63a4b2","keyword":"
磁化","originalKeyword":"磁化"},{"id":"205ade29-701f-4b73-8760-cc77f20a37f7","keyword":"反
磁化","originalKeyword":"反磁化"},{"id":"197fd75c-656e-4331-b61d-baad6bce9ac9","keyword":"磁畴结构","originalKeyword":"磁畴结构"}],"language":"zh","publisherId":"gncl200005012","title":"微细条形NiFe薄膜元件在
磁化和反
磁化过程中磁畴结构的变迁
过程","volume":"31","year":"2000"},{"abstractinfo":"通过分子动力学模拟,采用较先进的键型指数法HA及原子团类型指数法CTIM-2,对Fe连续升温、
降温过程中微观结构进行模拟研究.结果表明:连续升温
过程,Fe的微观结构变化是bcc→fcc\\hcp→bcc→液体;连续
降温过程,Fe的微观结构变化是液体→fcc\\hcp.Fe凝固结束没有形成大量的高温bcc晶体,原因是在高温液态中bcc结构原子稳定性较差,fcc和hcp结构原子更易稳定存在.此外,温度变化速率过快,可诱导晶体生长
过程中发生层错,促使Fe在升温、
降温过程出现fcc和hcp晶体的交替分层分布,这与fcc和hcp晶体的原子能量相近、晶体的致密度相同、原子空间堆垛方式局部相同有关.","authors":[{"authorName":"高帅","id":"8f946dd9-1704-40c5-8a2c-39515b4b0add","originalAuthorName":"高帅"},{"authorName":"吴永全","id":"74d2c6e2-7dd2-47a2-86d5-72a6129a2453","originalAuthorName":"吴永全"},{"authorName":"沈通","id":"04f7032d-ebab-474b-8539-d214fcbd7d4a","originalAuthorName":"沈通"},{"authorName":"张宁","id":"3469ed9d-2a96-4499-ac95-0e73f8fc16e7","originalAuthorName":"张宁"},{"authorName":"王赛","id":"5e3e51c0-a157-4982-aa18-0eabeb45e55d","originalAuthorName":"王赛"}],"doi":"","fpage":"1","id":"55c49b7c-88cc-432e-bcb5-c92cb0ab5139","issue":"5","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"0aaf2bc0-82b7-4b95-b153-32bba8696dd0","keyword":"原子团类型指数法","originalKeyword":"原子团类型指数法"},{"id":"079342f0-0cee-49b8-a1b5-e5d30d4224a8","keyword":"键型指数法","originalKeyword":"键型指数法"},{"id":"6ba276aa-3dcb-4f0a-9887-052cac83e36e","keyword":"Fe微观结构","originalKeyword":"Fe微观结构"},{"id":"82d247e8-1b26-44f4-ac83-4d1e1e8b8e86","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"}],"language":"zh","publisherId":"shjs201205001","title":"连续升温、
降温过程中纯Fe的微观结构分析","volume":"34","year":"2012"},{"abstractinfo":"利用单向压缩热模拟试验考察了20Mn钢
降温连续变形时铁素体的形成特点,并与
等温转变作了比较;用金相法建立了动态CCT曲线.高温形变影响铁素体的形态和分布.形成超细等轴铁素体的适宜温度范围在Ar3和A3之间(720~770℃).
等温形变比
降温形变容易获得较好的晶粒结构.","authors":[{"authorName":"杨平","id":"1c3aa15d-9a9e-432b-bff2-d76f78253daa","originalAuthorName":"杨平"},{"authorName":"郝广瑞","id":"f6c1c8c9-582b-40ca-b5c1-ce519d0cf872","originalAuthorName":"郝广瑞"},{"authorName":"崔凤娥","id":"7d7c3aff-d1f6-4528-b062-333ee88c0d15","originalAuthorName":"崔凤娥"},{"authorName":"孙祖庆","id":"7361900a-c461-4f8c-acc8-09ea8417f18f","originalAuthorName":"孙祖庆"}],"doi":"10.3969/j.issn.1001-1447.2002.05.003","fpage":"7","id":"615ad007-3b90-4113-b4c4-c8ed4d67d1f1","issue":"5","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"d2e431b2-81ca-4164-9fdd-8aedfefabc08","keyword":"低碳钢","originalKeyword":"低碳钢"},{"id":"90d87a8e-91e3-4747-b781-c7d5adc6255d","keyword":"形变强化相变","originalKeyword":"形变强化相变"},{"id":"1a6961ce-ac84-4a48-a971-af630ffc124d","keyword":"动态CCT曲线","originalKeyword":"动态CCT曲线"}],"language":"zh","publisherId":"gtyj200205003","title":"20Mn钢
降温连续形变
过程铁素体的形成特点及动态CCT曲线","volume":"30","year":"2002"}],"totalpage":4531,"totalrecord":45301}