欢迎登录材料期刊网

材料期刊网

高级检索

研究Ti40合金在550~700℃温度区间的吸氢动力学,初始氢压为15.88~45.88 kPa.研究表明,Ti40合金初始吸氢温度为515℃,吸氢时达到平衡所需的时间随着温度和初始氢压的增加而缩短,而吸氢速率和平衡氢压随着温度和初始氢压的增加而增加.在低温时,吸氢过程包括3个阶段:Ⅰ孕育期,Ⅱ第1吸氢阶段和Ⅲ第2吸氢阶段.在相同温度下,不同阶段的速率常数遵循以下关系:kⅡ>kⅠ >kⅢ.在相同阶段,速率常数随温度的升高而增大.吸氢过程中第1和第2吸氢阶段的激活能分别为73.3和29.6 KJ/mol.第2吸氢阶段的速率控制步骤为氢在β-Ti中的扩散.

The hydrogen absorption kinetics of Ti40 alloy was studied in the temperature range of 550-700 ℃ and the pressure range of 15.88-45.88 kPa.The initial temperature of hydrogen absorption for Ti40 alloy is 515 ℃.With the increase of temperature and initial hydrogen pressure,the time to reach the equilibrium condition becomes shorter,while hydrogen absorption rate and equilibrium hydrogen pressure increase.At low temperature,the process of hydrogen absorption consists of three stages:Ⅰ incubation stage,Ⅱ the first absorption stage and Ⅲ the second absorption stage.At the same temperature,the rate constants at different stages follow the relation:kⅡ >kⅠ >kⅢ.At the same stage,the rate constants increase with the increase of temperature.The activation energy of the first and second absorption stage are 73.3 kJ/mol and 29.6 kJ/mol,respectively.The rate controlling step at the second absorption stage is the hydrogen diffusion in β-Ti.

参考文献

[1] Lee J Y;Kim J H;Park S I et al.[J].Journal of Alloys and Compounds,1999,291(1-2):229.
[2] Zhao Y Q;Xin S W;Zeng W D .[J].Journal of Alloys and Compounds,2009,48(1-2):190.
[3] Li Y G;Loretto M H;Rugg D et al.[J].Acta Materialia,2001,49(15):3011.
[4] Teter D F;Robertson I M;Birnbaum H K .[J].Acta Materialia,2001,49(20):4313.
[5] Zhao Y Q;Qu H L;Zhu K Y et al.[J].Journal of Alloys and Compounds,2002,333(1-2):165.
[6] Zhao Y Q;Qu H L;Wang M M et al.[J].Journal of Alloys and Compounds,2006,407(1-2):118.
[7] Xin S W;Zhao Y Q;Zeng W D et al.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2008,477(1-2):372.
[8] Ding Y S;Tsay L W;Chen C .[J].Corrosion Science,2009,51(06):1413.
[9] Pao P S;Feng C R;Gill S J .[J].Scripta Metallurgica,1999,40:19.
[10] Senkov O N;Frones F H .[J].Journal of Hydrogen Energy,1999,24:565-576.
[11] Froes F H;Senkov O N;Qazi J I .[J].Materials Review,2004,49:227.
[12] Niu Yong;Li Miaoquan .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2009,513-514:228.
[13] Lapovok R;Tomus D;Skripnyuk V M et al.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2009,513-514:97.
[14] Zong Y Y;Shan D B;Luo Y S .[J].Journal of Hydrogen Energy,2009,34(11):4900.
[15] He W J;Zhang S H;Song H W .[J].Scripta Metallurgica,2009,61(01):16.
[16] Li Qian;Jiang Lijun;Chou Kuoehih .[J].Journal of Alloys and Compounds,2005,399:101.
[17] Moshe Mintz H;Yehuda Zeiri .[J].Journal of Alloys and Compounds,1994,216:159.
[18] Inomata A.;Miura T.;Aoki H. .Measurement and modelling of hydriding and dehydriding kinetics[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,1998(1/2):103-109.
[19] Dhaou H.J .[J].Hydrogen Energy Progress,2007,32:576.
[20] Joseph Bloch;Moshe Mintz H .[J].Journal of Alloys and Compounds,1997,253-254:529.
[21] Srinivas G;Sankaranarayanan V;Ramaprabhu S .[J].Journal of Alloys and Compounds,2008,448:293.
[22] Gao Shujun;Huang Lijun .[J].Journal of Alloys and Compounds,1999,293-295:412.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%